精英家教网 > 高中数学 > 题目详情

【题目】在锐角三角形中,分别为内角所对的边,且满足.

1)求角的大小;

2)若,且,求的值.

【答案】解:()因为

所以……………………………………………… 2

因为,所以. …………………………………………………3

为锐角,则. …………………………………………… 5

)由()可知,.因为

根据余弦定理,得………………………………………7

整理,得

由已知,则

,可得……………………………………… 9

于是………………………… 11

所以…………… 13

【解析】试题分析:(1)由正弦定理可得,即,则角可求;

2))由(1)知,,由余弦定理可得,进而求得的值可求

试题解析:(1)因为,所以,因为

所以,又为锐角,则.

2)由(1)知,,因为,根据余弦定理得:,整理,得,由已知,则,又,可得,于是

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中

)求的单调区间;

)若在上存在,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的A、B、C三个不同车间生产同一产品的数量(单位:件)如下表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测.

车间

A

B

C

数量

50

150

100

(1)求这6件样品中来自A、B、C各车间产品的数量;

(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件商品来自相同车间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)写出曲线的普通方程和曲线的直角坐标方程;

(2)已知点是曲线上一点,若点到曲线的最小距离为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,边长为的正方形与梯形所在的平面互相垂直,其中, 的中点.

(Ⅰ)证明: 平面

(Ⅱ)求与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年某市政府为了有效改善市区道路交通拥堵状况出台了一系列的改善措施,其中市区公交站点重新布局和建设作为重点项目.市政府相关部门根据交通拥堵情况制订了“市区公交站点重新布局方案”,现准备对该“方案”进行调查,并根据调查结果决定是否启用该“方案”.调查人员分别在市区的各公交站点随机抽取若干市民对该“方案”进行评分,并将结果绘制成如图所示的频率分布直方图.相关规则为:①调查对象为本市市民,被调查者各自独立评分;②采用百分制评分,[60,80)内认定为满意,不低于80分认定为非常满意;③市民对公交站点布局的满意率不低于75%即可启用该“方案”;④用样本的频率代替概率.

(1)从该市800万人的市民中随机抽取5人,求恰有2人非常满意该“方案”的概率;并根据所学统计学知识判断该市是否启用该“方案”,说明理由.

(2)已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中抽取3人担任群众督查员,记为群众督查员中的老人的人数,求随机变量的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中, 为坐标原点, 是双曲线上的两个动点,动点满足,直线与直线斜率之积为2,已知平面内存在两定点,使得为定值,则该定值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是直角梯形, ,又,直线与直线所成的角为

(1)求证:

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案