精英家教网 > 高中数学 > 题目详情
18.己知3sin(π-α)+cos(2π-α)=0.
(1)求 $\frac{sinα+cosα}{2sinα-cosα}$
(2)求$\frac{{sin2α+{{cos}^2}α}}{2cos2α+sin2α+2}$
(3)求$tan(2α-\frac{π}{4})$.

分析 根据同角三角函数关系式和万能公式化简后代入求值即可.

解答 解:己知3sin(π-α)+cos(2π-α)=0.
可得:3sinα+cosα=0,即tanα=$-\frac{1}{3}$;
(1)$\frac{sinα+cosα}{2sinα-cosα}$=$\frac{tanα+1}{2tanα-1}=\frac{-\frac{1}{3}+1}{-\frac{1}{3}×2-1}=\frac{\frac{2}{3}}{-\frac{5}{3}}=-\frac{2}{5}$;
(2)$\frac{{sin2α+{{cos}^2}α}}{2cos2α+sin2α+2}$=$\frac{2sinαcosα+co{s}^{2}α}{2(2co{s}^{2}α-1)+2sinαcosα+2}$=$\frac{2tanα+1}{4+2tanα}=\frac{1}{10}$;
(3)tan2α=$\frac{2tanα}{1+ta{n}^{2}α}$=$-\frac{3}{4}$,
∴$tan(2α-\frac{π}{4})=\frac{tan2α-1}{1+tan2α}=-7$.

点评 本题主要考察了同角三角函数关系式和万能公式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x-a|+|2x-1|.
(Ⅰ)当a=1时,解不等式f(x)≥2;
(Ⅱ)求证:$f(x)≥|a-\frac{1}{2}|$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=ex+$\frac{2x-5}{{x}^{2}+1}$的图象在点(0,f(0))处的切线与直线x-my+4=0垂直,则实数m的值为(  )
A.-3B.3C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若直线2x+y-4=0,x+ky-3=0与两坐标轴围成的四边形有外接圆,则此四边形的面积为(  )
A.$\frac{11}{4}$B.$\frac{5\sqrt{5}}{4}$C.$\frac{41}{20}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=x3+bx(x∈R)在点(-1,f(-1))处的切线与直线y=-x+2a平行,则实数b的值-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数$f(x)=\left\{\begin{array}{l}{log_2}(-x),x<0\\{2^x},x≥0\end{array}\right.$,若关于x的方程f2(x)-af(x)=0恰有三个不同的实数根,则实数a的取值范围是(  )
A.[0,+∞)B.(0,+∞)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若△OAB的垂心H(1,0)恰好为抛物线y2=2px的焦点,O为坐标原点,点A、B在此抛物线上,则此抛物线的方程是y2=4x,△OAB面积是10$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设$({x^2}-3){(2x+3)^{2015}}={a_0}+{a_1}(x+2)+{a_2}{(x+2)^2}+…+{a_{2017}}{(x+2)^{2017}}$,则a1+a2+…+a2017的值为(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某网站对“爱飞客”飞行大会的日关注量x(万人)与日点赞量y(万次)进行了统计对比,得到表格如下:
x35679
y23345
由散点图象知,可以用回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$来近似刻画它们之间的关系.
(Ⅰ)求出y关于x的回归直线方程,并预测日关注量为10万人时的日点赞量;
(Ⅱ)一个三口之家参加“爱飞客”亲子游戏,游戏规定:三人依次从装有3个白球和2个红球的箱子中不放回地各摸出一个球,大人摸出每个红球得奖金10元,小孩摸出1个红球得奖金50元.求该三口之家所得奖金总额不低于50元的概率.
参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$;    参考数据:$\sum_{i=1}^{5}$xi2=200,$\sum_{i=1}^{5}$xiyi=112.

查看答案和解析>>

同步练习册答案