精英家教网 > 高中数学 > 题目详情
14.{an}为等差数列,Sn为其前n项和,a7=5,S7=21,则S10=40.

分析 利用等差数列的通项公式及其前n项和公式即可得出.

解答 解:设等差数列{an}的公差为d,
∵a7=5,S7=21,
∴$\left\{\begin{array}{l}{{a}_{1}+6d=5}\\{7{a}_{1}+\frac{7×6}{2}×d=21}\end{array}\right.$,
解得a1=1,d=$\frac{2}{3}$.
则S10=10×1+$\frac{10×9}{2}×\frac{2}{3}$=40.
故答案为:40.

点评 本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2(sinx-cosx)cosx+1
(1)求f(x)的最小正周期及单调递减区间;
(2)若g(x)=f($\frac{x}{2}$)+sin2x,x∈[0,$\frac{π}{2}$],且g(x)=m方程有两个不等实数根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点(x,y)在△ABC所包围的阴影区域内(包含边界),若B是使得z=ax-y取得最大值的最优解,则实数a的取值范围为[-$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD的底面为正方形,PA⊥底面ABCD,E、F分别为AB、PD的中点.
(1)求证:AF∥平面PCE;
(2)求证:平面PAC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.点M为圆P内不同于圆心的定点,过点M作圆Q与圆P相切,则圆心Q的轨迹是(  )
A.B.椭圆C.圆或线段D.线段

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=cos(2x-$\frac{4π}{3}$)+2cos2x,
(Ⅰ)求f(x)的最大值,并写出使f(x)取最大值时x的集合;
(Ⅱ)已知△ABC中,角A、B、C的对边分别为a、b、c,若f(B+C)=$\frac{3}{2}$,a=1,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤1}\\{\frac{2}{x},x>1}\end{array}\right.$,分别求f(3),f(f(3)),f(f(-1)) 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数y=sinωx(ω>0)在一个周期内的图象如图所示,要得到函数$y=sin(\frac{1}{2}x+\frac{π}{12})$的图象,则需将函数y=sinωx的图象向左平移$\frac{π}{6}$个单位.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列四个命题中,真命题是(  )
A.平面就是平行四边形
B.空间任意三点可以确定一个平面
C.两两相交的三条直线可以确定一个平面
D.空间四点不共面,则其中任意三点不共线

查看答案和解析>>

同步练习册答案