精英家教网 > 高中数学 > 题目详情

【题目】已知 ,且 为不共线的平面向量.
(1)若 ,求k的值;
(2)若 ,求k的值.

【答案】
(1)解:因为

所以

所以

因为

所以9﹣16k2=0,

解得


(2)解:因为 ,且

所以存在实数λ,使得

因为 ,且 不共线,

所以

解得k=±2


【解析】1、由题意可得 , 即得到,由已知可得 k = .
2、由题意可得存在实数λ,使得 ,因为 不共线,解得k=±2
【考点精析】本题主要考查了数量积判断两个平面向量的垂直关系的相关知识点,需要掌握若平面的法向量为,平面的法向量为,要证,只需证,即证;即:两平面垂直两平面的法向量垂直才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=|x﹣1|,若方程f(x)= 有4个不相等的实根,则实数a的取值范围是(
A.(﹣ ,1)
B.( ,1)
C.( ,1)
D.(﹣1,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据环保部通报,2016年10月24日起,京津冀周边雾霾又起,为此,环保部及时提出防控建议,推动应对工作由过去“大水漫灌式”的减排方式转变为实现精确打击.某燃煤企业为提高应急联动的同步性,新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对大气环境的污染,已知过滤后废气的污染物数量N(单位:mg/L)与过滤时间t(单位:小时)间的关系为N(t)=N0e﹣λt(N0 , λ均为非零常数,e为自然对数的底数)其中N0为t=0时的污染物数量,若经过5小时过滤后污染物数量为 N0
(1)求常数λ的值;
(2)试计算污染物减少到最初的10%至少需要多少时间?(精确到1小时) 参考数据:ln3≈1.10,ln5≈1.61,ln10≈2.30.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ),(x∈R,A>0,ω>0,|φ|< )的部分图象如图所示:
(1)试确定f(x)的解析式;
(2)若f( )= ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,点E是PC的中点,作EF⊥PB交PB于点F.
(1)求证PA∥平面EDB;
(2)求二面角C﹣PB﹣D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x2﹣2x,g(x)=ax+2(a>0),对x1∈[﹣1,2],x0∈[﹣1,2],使g(x1)=f(x0),则a的取值范围是( )
A.
B.
C.[3,+∞)
D.(0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x2 在其定义域内的一个子区间(k﹣1,k+1)内不是单调函数,则实数k的取值范围( )
A.[1,+∞)
B.[1,
C.[1,+2)
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:f1(x)=f(x),当n≥2且x∈N*时,fn(x)=f(fn1(x)),对于函数f(x)定义域内的x0 , 若正在正整数n是使得fn(x0)=x0成立的最小正整数,则称n是点x0的最小正周期,x0称为f(x)的n~周期点,已知定义在[0,1]上的函数f(x)的图象如图,对于函数f(x),下列说法正确的是(写出所有正确命题的编号)

①1是f(x)的一个3~周期点;
②3是点 的最小正周期;
③对于任意正整数n,都有fn )=
④若x0∈( ,1],则x0是f(x)的一个2~周期点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:a∈R,且a>0,a+ ≥2,命题q:x0∈R,sinx0+cosx0= ,则下列判断正确的是(
A.p是假命题
B.q是真命题
C.(¬q)是真命题
D.(¬p)∧q是真命题

查看答案和解析>>

同步练习册答案