精英家教网 > 高中数学 > 题目详情

已知函数f(x)=3x+2a
(1)求f(0)(用含a的代数式表示);
(2)如果f(a)=2a-3,求a的值.

解:(1)∵函数f(x)=3x+2a,∴f(0)=0+2a=2a.
(2)如果f(a)=2a-3,则有 3a+2a=2a-3,解得 a=-1.
分析:(1)根据函数f(x)=3x+2a,可得 f(0)=0+2a,从而得到结果.
(2)如果f(a)=2a-3,则有 3a+2a=2a-3,由此解得a的值.
点评:本题主要考查根据函数的解析式求函数的值,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}(  )
A、是等比数列B、是等差数列C、从第2项起是等比数列D、是常数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有满足条件的m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x|x<a}.
(1)若A⊆B,求实数a的取值范围;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
a-1
(a≠1)在区间(0,4]上是增函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2log2x,g(x)=log2x.
(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]•g(x)的值域;
(2)如果对任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案