【题目】函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移 个单位后,与函数 的图象重合,则φ的值为( )
A.
B.-
C.
D.-
【答案】A
【解析】解:∵f(x)=cos(2x+φ)=sin[ +(2x+φ)]=sin(2x+ +φ),
∴f(x﹣ )=sin[2(x﹣ )+ +φ)]=sin(2x﹣ +φ),
又f(x﹣ )=sin(2x+ ),
∴sin(2x﹣ +φ)=sin(2x+ ),
∴φ﹣ =2kπ+ ,
∴φ=2kπ+ ,又﹣π≤φ<π,
∴φ= .
故选:A.
【考点精析】根据题目的已知条件,利用函数y=Asin(ωx+φ)的图象变换的相关知识可以得到问题的答案,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
科目:高中数学 来源: 题型:
【题目】已知直线,,是的动点,过点作的垂线,线段的中垂线交于点,的轨迹为.
(1)求轨迹的方程;
(2)过且与坐标轴不垂直的直线交曲线于两点,若以线段为直径的圆与直线相切,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设m, n是两条不同的直线,是三个不同的平面, 给出下列四个命题:
①若m⊥α,n∥α,则m⊥n;; ②若α∥β, β∥r, m⊥α,则m⊥r;
③若m∥α,n∥α,则m∥n;; ④若α⊥r, β⊥r,则α∥β.
其中正确命题的序号是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正三棱柱的所有棱长都相等,分别为的中点.现有下列四个结论:
:; :;
:平面; :异面直线与所成角的余弦值为.
其中正确的结论是
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点A,B.
(Ⅰ)求椭圆M的方程;
(Ⅱ)若,求 的最大值;
(Ⅲ)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点 共线,求k.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.命题“x∈R,ex>0”的否定是“x∈R,ex>0”
B.命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题
C.“x2+2x≥ax在x∈[1,2]上恒成立”“(x2+2x)min≥(ax)max在x∈[1,2]上恒成立”
D.命题“若a=﹣1,则函数f(x)=ax2+2x﹣1只有一个零点”的逆命题为真命题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com