精英家教网 > 高中数学 > 题目详情

【题目】“双十一”期间,某淘宝店主对其商品的上架时间分钟和销售量的关系作了统计,得到如下数据:

经计算: .

1)该店主通过作散点图,发现上架时间与销售量线性相关,请你帮助店主求出上架时间与销售量的线性回归方程(保留三位小数),并预测商品上架1000分钟时的销售量;

(2)从这11组数据中任选2组,设的数据组数为的分布列与数学期望.

附:线性回归方程公式:

【答案】(1) 预测商品上架1000分钟时销售量约为2157;(2) 的分布列为

=.

【解析】试题分析:1)根据题意,计算线性回归系数,写出线性回归方程,即可预测商品上架1000分钟时的销售量;(2由(1)知, 的数据组数有6组,则的可能取值为0,1,2.由此能求出的分布列和.

试题解析:1)由题知: ===2.008

==400-2.008125=149

∴回归直线方程为

时,

故预测商品上架1000分钟时销售量约为2157.

2)由(1)知, 的数据组数有6组,所以的可能取值为0,1,2.

== == ==

的分布列为

0

1

2

==.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设公差大于0的等差数列{an}的前n项和为Sn,已知S3=15,且a1a4a13成等比数列,记数列 的前n项和为Tn

(Ⅰ)求Tn

(Ⅱ)若对于任意的nN*,tTnan+11恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某校九年级1 600名学生的体能情况,随机抽查了部分学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,根据直方图的数据,下列结论错误的是(  )

A. 该校九年级学生1分钟仰卧起坐的次数的中位数为26.25

B. 该校九年级学生1分钟仰卧起坐的次数的众数为27.5

C. 该校九年级学生1分钟仰卧起坐的次数超过30次的约有320人

D. 该校九年级学生1分钟仰卧起坐的次数少于20次的约有32人

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“扶贫帮困”是中华民族的传统美德,某校为帮扶困难同学,采用如下方式进行一次募捐:在不透明的箱子中放入大小均相同的白球七个,红球三个,每位献爱心的参与者投币20元有一次摸奖机会,一次性从箱子中摸球三个(摸完球后将球放回),若有一个红球,奖金10元,两个红球奖金20元,三个全是红球奖金100元.

(1)求献爱心参与者中将的概率;

(2)若该次募捐900位献爱心参与者,求此次募捐所得善款的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 的离心率为 为椭圆的左右顶点,焦点到短轴端点的距离为2, 为椭圆上异于的两点,且直线的斜率等于直线斜率的2倍.

(Ⅰ)求证:直线与直线的斜率乘积为定值;

(Ⅱ)求三角形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本(万元)与年产量(吨)之间的函数关系式可以近似的表示为,已知此生产线年产量最大为吨.

1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;

2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an22cos2nN*,等差数列{bn}满足a12b1a2b2.

(1)bn

(2)cna2n1b2n1a2nb2n,求cn

(3)求数列{anbn}2n项和S2n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为F1(-c,0),F2(c,0),直线交椭圆E于A,B两点,△ABF1的周长为16,△AF1F2的周长为12.

(1)求椭圆E的标准方程与离心率;

(2)若直线l与椭圆E交于C,D两点,且P(2,2)是线段CD的中点,求直线l的一般方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 为等边三角形,平面平面 的中点.

1求二面角的正弦值;

2平面的值.

查看答案和解析>>

同步练习册答案