【题目】“双十一”期间,某淘宝店主对其商品的上架时间(分钟)和销售量(件)的关系作了统计,得到如下数据:
经计算: , , , .
(1)该店主通过作散点图,发现上架时间与销售量线性相关,请你帮助店主求出上架时间与销售量的线性回归方程(保留三位小数),并预测商品上架1000分钟时的销售量;
(2)从这11组数据中任选2组,设且的数据组数为,求的分布列与数学期望.
附:线性回归方程公式: ,
科目:高中数学 来源: 题型:
【题目】设公差大于0的等差数列{an}的前n项和为Sn,已知S3=15,且a1,a4,a13成等比数列,记数列 的前n项和为Tn.
(Ⅰ)求Tn;
(Ⅱ)若对于任意的n∈N*,tTn<an+11恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解某校九年级1 600名学生的体能情况,随机抽查了部分学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,根据直方图的数据,下列结论错误的是( )
A. 该校九年级学生1分钟仰卧起坐的次数的中位数为26.25
B. 该校九年级学生1分钟仰卧起坐的次数的众数为27.5
C. 该校九年级学生1分钟仰卧起坐的次数超过30次的约有320人
D. 该校九年级学生1分钟仰卧起坐的次数少于20次的约有32人
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“扶贫帮困”是中华民族的传统美德,某校为帮扶困难同学,采用如下方式进行一次募捐:在不透明的箱子中放入大小均相同的白球七个,红球三个,每位献爱心的参与者投币20元有一次摸奖机会,一次性从箱子中摸球三个(摸完球后将球放回),若有一个红球,奖金10元,两个红球奖金20元,三个全是红球奖金100元.
(1)求献爱心参与者中将的概率;
(2)若该次募捐900位献爱心参与者,求此次募捐所得善款的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆: 的离心率为, 、为椭圆的左右顶点,焦点到短轴端点的距离为2, 、为椭圆上异于、的两点,且直线的斜率等于直线斜率的2倍.
(Ⅰ)求证:直线与直线的斜率乘积为定值;
(Ⅱ)求三角形的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本(万元)与年产量(吨)之间的函数关系式可以近似的表示为,已知此生产线年产量最大为吨.
(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;
(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足an=2+2cos2,n∈N*,等差数列{bn}满足a1=2b1,a2=b2.
(1)求bn;
(2)记cn=a2n-1b2n-1+a2nb2n,求cn;
(3)求数列{anbn}前2n项和S2n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为F1(-c,0),F2(c,0),直线交椭圆E于A,B两点,△ABF1的周长为16,△AF1F2的周长为12.
(1)求椭圆E的标准方程与离心率;
(2)若直线l与椭圆E交于C,D两点,且P(2,2)是线段CD的中点,求直线l的一般方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com