ÔÚÕýÊýÊýÁÐ{an}£¨n¡ÊN*£©ÖУ¬SnΪ{an}µÄÇ°nÏîºÍ£¬Èôµã£¨an£¬Sn£©ÔÚº¯Êýy=
c2-x
c-1
µÄͼÏóÉÏ£¬ÆäÖÐcΪÕý³£Êý£¬ÇÒc¡Ù1£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÊÇ·ñ´æÔÚÕýÕûÊýM£¬Ê¹µÃµ±n£¾Mʱ£¬a1•a3•a5¡­a2n-1£¾a101ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öʹ½áÂÛ³ÉÁ¢µÄcµÄÈ¡Öµ·¶Î§ºÍÏàÓ¦µÄMµÄ×îСֵ£®
£¨¢ó£©Èô´æÔÚÒ»¸öµÈ²îÊýÁÐ{bn}£¬¶ÔÈÎÒân¡ÊN*£¬¶¼ÓÐb1an+b2an-1+b3an-2+¡­+bn-1a2+bna1=3n-
5
3
n-1
³ÉÁ¢£¬Çó{bn}µÄͨÏʽ¼°cµÄÖµ£®
¿¼µã£ºÊýÁÐÓë²»µÈʽµÄ×ÛºÏ,ÊýÁеĺ¯ÊýÌØÐÔ
רÌ⣺¼ÆËãÌâ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨¢ñ£©Óɵ㣨an£¬Sn£©ÔÚº¯ÊýͼÏóÉÏ£¬´úÈ뺯Êý±í´ïʽ¿ÉµÃµ½anÓëSnµÄ¹Øϵʽ£¬Ïûsn¿ÉÇóan£®
£¨¢ò£©¿¼²éÁ˺ã³ÉÁ¢Ìõ¼þµÄת»¯¼°Ö¸ÊýÔËËã·¨Ôò£»Í¬Ê±Ò²¿¼²éÁË·ÖÀàÌÖÂÛµÄ˼Ï룮
£¨¢ó£©¿¼²éÁË´íλÏà¼õ·¨µÄ±äÐÎÓ¦Óü°ºã³ÉÁ¢ÎÊÌâµÄ³£¹æ½â¾ö·½·¨£®
½â´ð£º ½â£º£¨¢ñ£©sn=
c2-an
c-1
£¬n¡Ý2ʱ£¬sn-sn-1=
c2-an
c-1
-
c2-an-1
c-1

an=
an-1-an
c-1
£¬(c-1)an=an-1-an£¬can=an-1£¬
an
an-1
=
1
c

¡à{an}ÊǵȱÈÊýÁУ®
½«£¨a1£¬S1£©´úÈëy=
c2-x
c-1
µÃa1=c£¬
¹Êan=(
1
c
)n-2
£®
£¨¢ò£©ÓÉa1•a3•a5¡­a2n-1£¾a101µÃ£¬c•c-1¡­(
1
c
)2n-3£¾(
1
c
)99
£¬
¡à(
1
c
)n(n-2)£¾(
1
c
)99
£®
Èô
1
c
£¾1£¬¼´0£¼c£¼1ʱ£¬n(n-2)£¾99
£¬
½âµÃ£ºn£¾11»òn£¼-9£¨ÉáÈ¥£©£®
Èô
1
c
£¼1£¬¼´c£¾1ʱ£¬n(n-2)£¼99
£¬
½âµÃ£º-9£¼n£¼11£¬
²»·ûºÏn£¾Mʱ£¬a1•a3•a5¡­a2n-1£¾a101ºã³ÉÁ¢£¬¹ÊÉáÈ¥£®
cµÄÈ¡Öµ·¶Î§ÊÇ£¨0£¬1£©£¬ÏàÓ¦µÄMµÄ×îСֵΪ11£®
£¨¢ó£©ÓÉ£¨¢ñ£©Öª£¬an=c2-n£¬ÓÉ{bn}ΪµÈ²îÊýÁУ¬Éèbn=b1+£¨n-1£©d£®
b1an+b2an-1+¡­+bn-1a2+bna1=3n-
5
3
n-1
£¨n¡ÊN*£©£¬£¨1£©
µ±n=1ʱ£¬b1c=
1
3
£®£¨2£©
µ±n¡Ý2ʱ£¬b1an-1+b2an-2+¡­+bn-2a2+bn-1a1=3n-1-
5
3
(n-1)-2
£¬£¨3£©
£¨1£©-£¨3£©µÃb1an+d£¨an-1+an-2+¡­+a1£©=3n-3n-1-
5
3
£¬
¼´£¨b1c-
c2d
c-1
£©c1-n+
c2d
c-1
=2¡Á3n-1-
5
3
£¬£¨4£©
¡ß£¨4£©Ê½¶ÔÒ»ÇÐn£¨n¡Ý2£©ºã³ÉÁ¢£¬Ôò±ØÓÐ
1
c
=3
b1c-
c2d
c-1
=2£¬(5)
c2d
c-1
=-
5
3

½â£¨2£©£¨5£©µÃ
c=
1
3
b1=1
d=10
¹Êbbn=10n-9£¬c=
1
3
£®
µãÆÀ£º±¾ÌâÒÔÊýÁÐΪÔØÌ壬²»½ö¿¼²éÁËÊýÁеÄÇóºÍ·½·¨ÓëÇóͨÏʽµÄ·½·¨£¬¶øÇÒ¿¼²éÁ˺ã³ÉÁ¢ÎÊÌâµÄ´¦Àí·½·¨£»×ÛºÏÐԱȽÏÇ¿£®»¯¼òºÜ·±Ëö£¬Ñ§Éú¿Éͨ¹ý¶àÁ·Ï°ÕÆÎÕ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬Êä³öµÄ½á¹ûÊÇ15£¬ÔòaµÄ³õʼֵm£¨m£¾0£©ÓжàÉÙÖÖ¿ÉÄÜ£¨¡¡¡¡£©
A¡¢1B¡¢2C¡¢3D¡¢4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=2
3
sinxcosx+2cos2x+mÔÚÇø¼ä[0£¬
¦Ð
3
]ÉϵÄ×î´óֵΪ2£®
£¨1£©Çó³£ÊýmµÄÖµ£»
£¨2£©ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß³¤·Ö±ðΪa£¬b£¬c£¬Èôf£¨A£©=1£¬sinB=3sinC£¬¡÷ABCÃæ»ýΪ
9
3
4
£¬Çó±ß³¤a£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÑо¿PM2.5£¨ö²µÄÖ÷Òª³É·Ö£©ÐγÉÔ­Òòʱ£¬Ä³Ñо¿ÈËÔ±Ñо¿ÁËPM2.5ÓëȼÉÕÅŷŵÄCO2£¬NO2£¬CO£¬O3µÈÎïÖʵÄÏà¹Ø¹Øϵ£¬ÈçͼÊÇPM2.5ÓëCO£¬O3Ïà¹ØÐÔµÄÉ¢µãͼ£¬
£¨¢ñ£©¸ù¾ÝÈýµãͼ£¬ÇëÄã¾ÍCO£¬O3¶ÔPM2.5µÄÓ°Ïì¹Øϵ×÷³ö³õ²½ÆÀ¼Û£»
£¨¢ò£©ÒÔ100¦Ìg/m3Ϊµ¥Î»£¬ÔÚÉÏÊö×óͼÖÐÈ¡Èý¸öµã£¬ÈçϱíËùʾ£¬
PM2.5£¨x£© 1 2 4
CO£¨y£© 0.5 1 1.5
Çó
y
¹ØÓÚ
x
µÄ»Ø¹é·½³Ì£¬²¢¹À¼Æµ±COµÄÅÅ·ÅÁ¿Îª200¦Ìg/m3ʱ£¬PM2.5µÄÖµ£¨ÓÃ×îС¶þ³Ë·¨Çó»Ø¹é·½³ÌµÄϵÊýÊÇ£¨b=
n
i-1
xiyi-n
.
x
.
y
n
i-1
xi2-n
.
x
2
£¬a=
.
y
-b
.
x
£©
£¨¢ó£©Îíö²¶Ô½»Í¨Ó°Ïì½Ï´ó£¬Ä³Êн»Í¨²¿ÃÅ·¢ÏÖ£¬ÔÚÒ»¸öÔÂÄÚ£¬µ±COÅÅ·ÅÁ¿£¨µ¥Î»£º¦Ìg/m3£©·Ö±ðÊÇ60£¬120£¬180ʱ£¬Ä³Â·¿ÚµÄ½»Í¨Á÷Á¿£¨µ¥Î»£ºÍòÁ¾£©ÒÀ´ÎÊÇ800£¬600£¬200£¬ÔÚÒ»¸öÔÂÄÚ£¬COÅÅ·ÅÁ¿ÊÇ60£¬120£¬180µÄ¸ÅÂÊÒÀ´ÎÊÇp£¬q£¬r£¬ÇҦѡÜ
1
3
£¬3¦Ñ¡Ü4r£¬Çó¸Ã·¿ÚÒ»¸öÔµĽ»Í¨Á÷Á¿ÆÚÍûÖµµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ij¸ßУµÄ×ÔÖ÷ÕÐÉú¿¼ÊÔÉèÖÃÁË×Ô¼ö¡¢±ÊÊÔºÍÃæÊÔÈý¸ö»·½Ú£¬²¢¹æ¶¨Ä³¸ö»·½Úͨ¹ýºó²ÅÄܽøÈëÏÂÒ»»·½Ú£¬ÇÒÈý¸ö»·½Ú¶¼Í¨¹ý²ÅÄܱ»Â¼È¡£®Ä³Ñ§ÉúAÈý¸ö»·½ÚÒÀ´Îͨ¹ýµÄ¸ÅÂÊ×é³ÉÒ»¸ö¹«²îΪ
1
8
µÄµÈ²îÊýÁУ¬ÇÒµÚÒ»¸ö»·½Ú²»Í¨¹ýµÄ¸ÅÂʳ¬¹ý
1
2
£¬µÚÒ»¸ö»·½Úͨ¹ýµ«µÚ¶þ¸ö»·½Ú²»Í¨¹ýµÄ¸ÅÂÊΪ
5
32
£¬¼Ù¶¨Ã¿¸ö»·½ÚѧÉúÊÇ·ñͨ¹ýÊÇÏ໥¶ÀÁ¢µÄ£®
£¨¢ñ£©ÇóѧÉúA±»Â¼È¡µÄ¸ÅÂÊ£»
£¨¢ò£©¼ÇѧÉúAͨ¹ýµÄ»·½ÚÊýΪ¦Î£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
1
3
x3-
1
2
£¨a+2£©x2+2ax-a2£¨a¡ÊR£©£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ò£©Èôa=4£¬y=f£¨x£©µÄͼÏóÓëÖ±Ïßy=mÓÐÈý¸ö½»µã£¬ÇómµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶¨ÒåÔÚm£¾n£¾0ÉϵÄżº¯Êýf£¨x£©µÄÖÜÆÚΪ2£¬ÇÒµ±0¡Üx¡Ü1ʱ£¬f£¨x£©=-
1-x2
Ôòf£¨-2013£©+f£¨-2012£©+f£¨-2011£©+¡­+f£¨2012£©+f£¨2013£©=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶þÏîʽ£¨1+sinx£©nµÄÕ¹¿ªÊ½ÖУ¬Ä©Î²Á½ÏîµÄϵÊýÖ®ºÍΪ7£¬ÇÒϵÊý×î´óµÄÒ»ÏîµÄֵΪ
5
2
£¬ÔòxÔÚ[0£¬2¦Ð]ÄÚµÄֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹ýµãA£¨2£¬1£©£¬ÇÒÓëÖ±Ïß2x-y+3=0ƽÐеÄÖ±Ïß·½³ÌΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸