精英家教网 > 高中数学 > 题目详情
15.已知A(a,b),B(a′,b′)是圆x2+y2=2上任意的两点,若aa′+bb′=-1,则线段AB的长为$\sqrt{6}$.

分析 设A($\sqrt{2}$cosα,$\sqrt{2}$sinα),B($\sqrt{2}$cosβ,$\sqrt{2}$sinβ),则aa'+bb'=2cos(α-β)=-1,可设α-β=$\frac{2π}{3}$,结合参数α,β的几何意义得,∠AOB=$\frac{2π}{3}$,利用余弦定理求出线段AB的长.

解答 解:设A($\sqrt{2}$cosα,$\sqrt{2}$sinα),B($\sqrt{2}$cosβ,$\sqrt{2}$sinβ),
则aa'+bb'=2cos(α-β)=-1,可设α-β=$\frac{2π}{3}$,
再结合参数α,β的几何意义得,∠AOB=$\frac{2π}{3}$,
因此,|AB|=$\sqrt{2+2-2×\sqrt{2}×\sqrt{2}×(-\frac{1}{2})}$=$\sqrt{6}$.
故答案为:$\sqrt{6}$.

点评 本题考查直线与圆的位置关系,考查参数方法的运用,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{2}$x2-(a+1)x+alnx.
(1)讨论函数f(x)的单调性;
(2)若m,n是函数f(x)的两个极值点,m<n,n∈(1,e].求证:对任意的x1,x2∈[m,n],不等式|f(x1)-f(x2)|<1恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某城市受雾霾影响严重,现欲在该城市中心P的两侧建造A,B两个空气净化站(A,P,B三点共线),A,B两站对该城市的净化度分别为a,1-a,其中a∈(0,1).已知对该城市总净化效果为A,B两站对该城市的净化效果之和,且每站净化效果与净化度成正比,与中心P到净化站距离成反比.若AB=1,且当AP=$\frac{3}{4}$时,A站对该城市的净化效果为$\frac{a}{3}$,B站对该城市的净化效果为1-a.
(1)设AP=x,x∈(0,1),求A,B两站对该城市的总净化效果f(x);
(2)无论A,B两站建在何处,若要求A,B两站对该城市的总净化效果至少达到$\frac{1}{2}$,求a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知二项式(1+$\sqrt{2}$x)n=a0+a1x+a2x2+…+anxn(x∈R,n∈N)
(1)若展开式中第五项的二项式系数是第三项系数的3倍,求n的值;
(2)若n为正偶数时,求证:a0+a2+a4+a6+…+an为奇数.
(3)证明:C${\;}_{n}^{1}$+2C${\;}_{n}^{2}$•2+3C${\;}_{n}^{3}$•22+…+nC${\;}_{n}^{n}$•2n-1=n•3n-1(n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知a、b∈R+,若向量$\overrightarrow{m}$=(2,12-2a)与向量$\overrightarrow{n}$=(1,2b)共线,则$\sqrt{2a+b}$+$\sqrt{a+5b}$的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=2sin({\frac{1}{3}x-\frac{π}{6}}),x∈R$.
(1)求$f({\frac{5π}{4}})$的值;
(2)求$f({\frac{2π}{3}})f({\frac{4π}{3}})f({\frac{5π}{3}})$的值;
(2)设$α,β∈[{0,\frac{π}{2}}],f({3α+\frac{π}{2}})=\frac{10}{13},f({3β+2π})=\frac{6}{5}$,求$cos\frac{α+β}{2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.证明:${A}_{n+1}^{m}$=${A}_{n}^{m}$+m${A}_{n}^{m-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设随机变量X等可能取1、2、3…n值,如果p(X≤4)=0.4,则n值为(  )
A.4B.6C.10D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数$f(x)=\sqrt{3}sinωx+cosωx$的图象向右平移$\frac{π}{3}$个单位后所的图象关于y轴对称,则ω的值可以是(  )
A.7B.8C.9D.10

查看答案和解析>>

同步练习册答案