【题目】如图,在△ABC中,D为边BC上一点,AD=6,BD=3, DC=2.
(1)若AD⊥BC,求∠BAC的大小;
(2)若∠ABC= ,求△ADC的面积.
【答案】
(1)解:设∠BAD=α,∠DAC=β.
因为AD⊥BC,AD=6,BD=3,DC=2,
所以tanα= ,tanβ= ,
所以tan∠BAC=tan(α+β)= = =1.
又∠BAC∈(0,π),
所以∠BAC=
(2)解:设∠BAD=α.在△ABD中,∠ABC= ,AD=6,BD=3.
由正弦定理得 = ,解得sinα= .
因为AD>BD,
所以α为锐角,从而cosα= = .
因此sin∠ADC=sin(α+ )=sinαcos +cosαsin = ( + )= .
△ADC的面积S= ×AD×DCsin∠ADC= ×6×2× = (1+ )
【解析】(1)设∠BAD=α,∠DAC=β,由已知可求tanα= ,tanβ= ,利用两角和的正切函数公式可求tan∠BAC=1.结合范围∠BAC∈(0,π),即可得解∠BAC的值.(2)设∠BAD=α.由正弦定理可求sinα= ,利用大边对大角,同角三角函数基本关系式可求cosα的值,利用两角和的正弦函数公式可求sin∠ADC,进而利用三角形面积公式即可计算得解.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是等边三角形.
(1)证明:PB⊥CD;
(2)求二面角A﹣PD﹣C的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)如图,在四棱锥P—ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.
(1)求点D到平面PBC的距离;
(2)设Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求二面角B-CQ-D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,边a、b、c分别是角A、B、C的对边,且满足bcosC=(3a-c)cosB
(1)求cosB
(2)若△ABC的面积为4,b=4,求△ABC的周长
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,将边长为1的正方形沿对角线折起,使得平面平面,在折起后形成的三棱锥中,给出下列四种说法:
①是等边三角形;②;③;④直线和所成的角的大小为.其中所有正确的序号是( )
A. ①③B. ②④C. ①②③D. ①②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列{an} 为等比数列,等差数列{bn} 的前n 项和为Sn (n∈N* ),且满足:S13=208,S9﹣S7=41,a1=b2,a3=b3.
(1)求数列{an},{bn} 的通项公式;
(2)设Tn=a1b1+a2b2+…+anbn (n∈N* ),求Tn;
(3)设,是否存在正整数m,使得cm·cm+1·cm+2+8=3(cm+cm+1+cm+2).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假定某射手射击一次命中目标的概率为.现有4发子弹,该射手一旦射中目标,就停止射击,否则就一直独立地射击到子弹用完.设耗用子弹数为X,求:
(1)X的概率分布;
(2)数学期望E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直角坐标系xoy中,椭圆的离心率为,过点.
(1)求椭圆C的方程;
(2)已知点P(2,1),直线与椭圆C相交于A,B两点,且线段AB被直线OP平分.
①求直线的斜率;②若,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com