精英家教网 > 高中数学 > 题目详情

【题目】已知函数,下列结论中不正确的是( )

A. 的图象关于点中心对称

B. 的图象关于直线对称

C. 的最大值为

D. 既是奇函数,又是周期函数

【答案】C

【解析】试题分析:对于A中,因为

,所以,可得的图象关于中心对称,故A正确;对于B,因为

,所以,可得的图象关于中心对称,故B正确;对于C,化简得

,令,因为的导数

,所以当时,,函数为减函数;当时,,函数为增函数,因此函数的最大值为时的函数值,结合,可得的最大值为,由此可得的最大值为,而不是,所以不正确;对于D,因为,所以是奇函数,因为,所以为函数的一个周期,得为周期,可得既是奇函数,又是周期函数,所以正确,故选D.

【方法点晴】本题主要考查了三角函数的图象与性质及三角函数的最值问题,其中解答中涉及到三角函数的解析式、三角函数的奇偶性、三角函数的单调性和周期性等知识点的综合考查,着重考查了三角恒等变换公式、利用导数研究函数的单调性和函数的图象的对称性等知识,体现了分析问题和解答问题的能力,属于中档试题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+3x2﹣9x+m
(1)求函数f(x)=x3+3x2﹣9x+m的单调递增区间;
(2)若函数f(x)在区间[0,2]上的最大值12,求函数f(x)在该区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,PA⊥底面ABCD,AB⊥AC,AB=1,BC=2,PA= ,E为BC的中点.
(1)证明:PE⊥ED;
(2)求二面角E﹣PD﹣A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若在曲线f(x,y)=0(或y=f(x))上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0或y=f(x)的“自公切线”.下列方程:
①x2﹣y2=1;
②y=x2﹣|x|;
③y=3sinx+4cosx;
④|x|+1=
对应的曲线中存在“自公切线”的有( )
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标中,以为极点, 轴正半轴为极轴建立极坐标系,曲线的参数方程为: ,曲线的极坐标方程:

1)写出的普通方程;

2)若交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为 为参数).以坐标原点为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.

(1)当时,求曲线上的点到直线的距离的最大值;

(2)若曲线上的所有点都在直线的下方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A,B两地的距离是120km,按交通法规规定,A,B两地之间的公路车速应限制在50~100km/h,假设汽油的价格是6元/升,以xkm/h速度行驶时,汽车的耗油率为 ,司机每小时的工资是36元,那么最经济的车速是多少?如果不考虑其他费用,这次行车的总费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,恒有成立,且,对任意的,则成立的充要条件是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一元二次不等式﹣x2+x+2>0的解集是(
A.{x|x<﹣1或x>2}
B.{x|x<﹣2或x>1}
C.{x|﹣1<x<2}
D.{x|﹣2<x<1}

查看答案和解析>>

同步练习册答案