精英家教网 > 高中数学 > 题目详情
已知f(x)=
x(x-a+1)+a-4x-2

(1)若关于x的方程f(x)=0有大于2的两个实根,求a的取值范围;
(2)解关于x的不等式f(x)>2(其中a>1).
分析:(1)通过方程f(x)=0有大于2的两个实根,利用韦达定理列出关系式,即可求a的取值范围;
(2)不等式f(x)>2,转化为3次不等式,通过a>1,讨论因式的根的大小求解不等式的解集即可.
解答:(本小题满分12分)
解:(1)由f(x)=0有大于2的两个实根,等价于x(x-a+1)+a-4=0
即x2-(a-1)x+a-4=0有大于2的两个实根,
△=(1-a)2-4(a-4)≥0
x1+x2=a-1>4
(x1-2)(x2-2)=-a+2>0
a∈R
a>5
a<2
⇒a∈∅

(2)关于x的不等式f(x)>2,
可得
x(x-a+1)+a-4
x-2
>2

即:
x2-(a+1)x+a
x-2
>0
?
(x-a)(x-1)
x-2
>0

即:(x-a)(x-1)(x-2)>0由于a>1,
于是有:
①当1<a<2时,不等式的解集为:{x|1<x<a或x>2}.
②当a>2时,不等式的解集为:{x|1<x<2或x>a}.
③当a=2时,不等式的解集为:{x|x>1且x≠2}.
点评:本题考查函数的零点的应用,不等式的解集的求法,分类讨论问题的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
x(x≤0)
-x(x>0)
,g(x)=x+1,则f[g(x)]等于
x+1,         (x≤-1)
-x+1,      (x>-1)
x+1,         (x≤-1)
-x+1,      (x>-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=2log2(1-x)
(1)求f(x)及g(x)的解析式,并指出其单调性(无需证明).
(2)求使f(x)<0的x取值范围.
(3)设h-1(x)是h(x)=log2x的反函数,若存在唯一的x使
1-h-1(x)1+h-1(x)
=m-2x
成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若数学公式,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间数学公式上的值域为数学公式,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(20)(解析版) 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间上的值域为,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x(x-a)(x-b),点A(s,f(s)),B(t,f(t)).

(1)若a=b=1,求函数f(x)的单调递增区间;

(2)若函数f(x)的导函数f′(x)满足:当|x|≤1时,有|f′(x)|≤恒成立,求函数f(x)的解析表达式;

(3)若0<a<b,函数f(x)在x=s和x=t处取得极值,且a+b<2,证明不可能垂直.

查看答案和解析>>

同步练习册答案