精英家教网 > 高中数学 > 题目详情
(12分)已知三棱锥A-PBC ∠ACB=90°
AB=20  BC=4  PAPC,D为AB中点且△PDB为正三角形
(1)求证:BC⊥平面PAC;
(2)求三棱锥D-PBC的体积。

(1)略
(2)
解:(1)△PDB为正三角形D为AB中点

 即………………………………2分
又知
平面PBC………………………………………………4分

且PAAC=A
平面PAC………………………………………………6分
(2)由(1)得



由D为AB中点
………………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题14分)

如图4,正方体中,点E在棱CD上。
(1)求证:
(2)若E是CD中点,求与平面所成的角;
(3)设M在上,且,是否存在点E,使平面⊥平面,若存在,指出点E的位置,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正△的边长为4,边上的高,分别是边的中点,现将△沿翻折成直二面角
(1)试判断直线与平面的位置关系,并说明理由;
(2)求二面角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,动点P在正方体ABCD—A1B1C1D1的对角线BD1上,过点P作垂直于平面BB1D1D的直线,与正方体表面交于M、N,设BP=x,MN=y,则函数的图象大致是

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分12分)
已知正方体ABCD—A1B1C1D1,其棱长为2,O是底ABCD对角线的交点。

求证:
(1)C1O∥面AB1D1;
(2)A1C⊥面AB1D1。 
(3)若M是CC1的中点,求证:平面AB1D1⊥平面MB1D1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分12分)
如图,在六面体中,四边形ABCD是边长为2的正方形,四边形是边长为1的正方形,平面,平面ABCD,DD1=2。

(1)求证:与AC共面,与BD共面.   
(2)求证:平面
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长都相等的正三棱柱中,分别为的中点.
⑴求证:
⑵求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点。
(1)求证:B1C1⊥平面ABB1A1;
(2)在CC1上是否存在一点E,使得∠BA1E=45°,若存在,试确定E的位置,并判断平面A1BD与平面BDE是否垂直?若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分别交AC、PC于D、E两点,又PB=BC,PA="A" B.
(Ⅰ)求证:PC⊥平面BDE;
(Ⅱ)若点Q是线段PA上任一点,求证:BD⊥DQ;
(Ⅲ)求线段PA上点Q的位置,使得PC//平面BDQ.

查看答案和解析>>

同步练习册答案