精英家教网 > 高中数学 > 题目详情

【题目】已知函数为常数).

(1)当时,讨论函数的单调性;

(2)设可求导数,且它的导函数仍可求导数,则再次求导所得函数称为原函数的二阶函数,记为,利用二阶导函数可以判断一个函数的凹凸性.一个二阶可导的函数在区间上是凸函数的充要条件是这个函数在的二阶导函数非负.

不是凸函数,求的取值范围.

【答案】(1)见解析(2)

【解析】试题分析:

(1)将 代入函数 的解析式,利用导函数与原函数的关系讨论函数的单调性即可;

(2)利用题中所给的新知识结合题意考查函数的二次导函数,将问题转化为恒成立问题,据此求解实数 的取值范围即可.

试题解析:

(I)

时, 上是单调增函数,

故而, 内的唯一零点,即内的唯一零点.

所以当时, ,即上是单调减函数;

时, ,即上是单调增函数.

(II)

如果是凸函数,那么 都有

即得

时, 时,

单调递增,在单调递减, 所以

不是凸函数,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形中, 为正三角形, 中心点,将沿边折起,使点至点,已知与平面所成的角为.

(1)求证:平面平面

(2)求已知二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品.为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据,如下表所示:

已知.

(1)求出的值;

(2)已知变量 具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程

(3)用表示用正确的线性回归方程得到的与对应的产品销量的估计值.当销售数据的残差的绝对值时,则将销售数据称为一个“好数据”.现从6个销售数据中任取2个,求抽取的2个销售数据中至少有1个是“好数据”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆关于直线对称的圆为.

(1)求圆的方程;

(2)过点作直线与圆交于两点, 是坐标原点,是否存在这样的直线,使得在平行四边形?若存在,求出所有满足条件的直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甘肃省瓜州县自古就以盛产“美瓜”而名扬中外,生产的“瓜州蜜瓜”有4个系列30多个品种,质脆汁多,香甜可口,清爽宜人,含糖量达14%-19%,是消暑止渴的佳品,有诗赞曰:冰泉浸绿玉,霸刀破黄金;凉冷消晚署,清甘洗渴心,调查表明,蜜瓜的甜度与海拔高度、日照时长、温差有极强的相关性,分别用表示蜜瓜甜度与海拔高度、日照时长、温差的相关程度,并对它们进行量化:0表示一般,1表示良,2表示优,再用综合指标的值评定蜜瓜的等级,若,则为一级;若,则为二级;若,则为三级.近年来,周边各省也开始发展蜜瓜种植,为了了解目前蜜瓜在周边各省的种植情况,研究人员从不同省份随机抽取了10块蜜瓜种植地,得到如下结果:

(1)若有蜜瓜种植地110块,试估计等级为一级的蜜瓜种植地的数量;

(2)在所取样本的二级和三级蜜瓜种植地中任取2块, 表示取到三级蜜瓜种植地的数量,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点分别到两定点 连线的斜率之乘积为,设的轨迹为曲线 分别为曲线的左右焦点,则下列命题中:

(1)曲线的焦点坐标为 ;

(2)若,则 ;

(3)当时, 的内切圆圆心在直线上;

(4)设,则的最小值为.

其中正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某微信群中有甲、乙、丙、丁、戊五个人玩抢红包游戏,现有4个红包,每人最多抢一个,且红包被全部抢完,4个红包中有2个6元,1个8元,1个10元(红包中金额相同视为相同红包),则甲、乙都抢到红包的情况有( )

A. 18种 B. 24种 C. 36种 D. 48种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sin(2x+ ),给出下列四个命题:
①函数f(x)在区间[ ]上是减函数;
②直线x= 是f(x)的图象的一条对称轴;
③函数f(x)的图象可以由函数y= sin2x的图象向左平移 而得到;
④函数f(x)的图象的一个对称中心是( ,0).
其中正确的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差d>0.设{an}的前n项和为Sna1=1,S2·S3=36.

(1)求dSn

(2)求mk(mk∈N*)的值,使得amam+1am+2+…+amk=65.

查看答案和解析>>

同步练习册答案