精英家教网 > 高中数学 > 题目详情
14.椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1上一点P到椭圆一个焦点的距离为2,则P到另一焦点的距离为(  )
A.3B.5C.7D.8

分析 利用椭圆的定义,求解P到另一焦点的距离即可.

解答 解:椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1,可得a=5,椭圆上的一点P到椭圆一个焦点的距离为2,则P到另一焦点的距离为:10-2=8.
故选:D.

点评 本题考查椭圆的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.函数f(x)的定义域为R,且f(-3)=1,f'(x)>2,则不等式f(x)<2x+7的解集为(-∞,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$f(x)=\left\{\begin{array}{l}{(2a-1)^x},(x≤1)\\(5-a)x+a,(x>1)\end{array}\right.$在(-∞,+∞)上是增函数,则实数a的取值范围是(  )
A.1<a<3B.1<a≤3C.$\frac{1}{2}$<a<5D.$\frac{1}{2}$<a≤5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.计算:${(\sqrt{2}•\root{3}{3})^6}-{log_2}({log_2}16)$=70.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,定义在[-2,2]的偶函数f(x)的图象如图所示,则方程f(f(x))=0的实根个数为(  )
A.3B.4C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若0$<α<\frac{π}{2}$,-$\frac{π}{2}$<β<0,cos($α+\frac{π}{4}$)=$\frac{1}{3}$,sin($\frac{β}{2}$+$\frac{π}{4}$)=$\frac{\sqrt{3}}{3}$,则cos(2α+β)=$\frac{23}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若方程$\sqrt{1-{x^2}}=a(x-2)$有两个不相等实数根,则实数a的取值范围是$(-\frac{{\sqrt{3}}}{3},0]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设$a={2016^{\frac{1}{2017}}},b={log_{2016}}^{\sqrt{2017}},c={log_{2017}}^{\sqrt{2016}}$,则a,b,c的大小关系为(  )
A.a>b>cB.a>c>bC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设$f(x)=\frac{2}{{{2^x}+1}}+m,x∈R,m$为常数.
(1)若f(x)为奇函数,求实数m的值;
(2)判断f(x)在R上的单调性,并用单调性的定义予以证明;
(3)求f(x)在(-∞,1]上的最小值.

查看答案和解析>>

同步练习册答案