【题目】已知椭圆的离心率为,圆经过椭圆的左,右焦点.
(1)求椭圆的标准方程;
(2)直线与椭圆交于点,线段的中点为,的垂直平分线与轴和轴分别交于两点,是否存在实数,使得的面积与(为原点)的面积相等?若存在,求出的值,若不存在,说明理由.
【答案】(1);(2)不存在,理由见解析.
【解析】
(1)设,由题意得,,从而可求出,,即可得出结果;
(2)先假设存在实数,使得的面积与的面积相等,易知,把代入整理,设,,由根与系数关系,求得.,设点坐标为,根据题意,求得.
根据,列出方程,求得方程无解,即可得出结论.
(1)设,由题意得,
由圆经过椭圆的左,右焦点,得,
所以,,
所以椭圆的标准方程为.
(2)假设存在实数,使得的面积与的面积相等,易知,
把代入,
整理得,,
设,,则,
故点的横坐标为,点的给坐标为,
即.
设点坐标为,因为,
所以,解得,即.
由,及的面积与面积相等,可得.
所以,
整理得.因为此方程无解,
所以不存在实数,使得的面积与的面积相等.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若函数在处的切线斜率为2,试求a的值及此时的切线方程;
(2)若函数在区间(其中…为自然对数的底数)上有唯一的零点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了更好地贯彻党的“五育并举”的教育方针,某市要对全市中小学生“体能达标”情况进行了解,决定通过随机抽样选择几个样本校对学生进行体能达标测试,并规定测试成绩低于60分为不合格,否则为合格,若样本校学生不合格人数不超过其总人数的5%,则该样本校体能达标为合格.已知某样本校共有1000名学生,现从中随机抽取40名学生参加体能达标测试,首先将这40名学生随机分为甲、乙两组,其中甲乙两组学生人数的比为3:2,测试后,两组各自的成绩统计如下:甲组的平均成绩为70,方差为16,乙组的平均成绩为80,方差为36.
(1)估计该样本校学生体能测试的平均成绩;
(2)求该样本校40名学生测试成绩的标准差s;
(3)假设该样本校体能达标测试成绩服从正态分布,用样本平均数作为的估计值,用样本标准差s作为的估计值,利用估计值估计该样本校学生体能达标测试是否合格?
(注:1.本题所有数据的最后结果都精确到整数;2若随机变量z服从正态分布,则,,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,把满足条件(对任意的)的所有数列构成的集合记为.
(1)若数列的通项为,判断是否属于,并说明理由;
(2)若数列的通项为,判断是否属于,并说明理由;
(3)若数列是等差数列,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设各项均为正数的数列的前n项和为,已知,且,对一切都成立.
(1)当时,证明数列是常数列,并求数列的通项公式;
(2)是否存在实数,使数列是等差数列?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是圆O的直径,点C是圆O上异于A,B的点,直线平面,E,F分别是,的中点.
(1)记平面与平面的交线为l,试判断直线l与平面的位置关系,并加以证明;
(2)设,求二面角大小的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正六棱锥中,底面边长和侧棱分别是2和4,,分别是和的中点,给出下面三个判断:(1)和所成的角的余弦值为;(2)和底面所成的角是;(3)平面平面;其中判断正确的个数是( )
A.0B.1C.2D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com