精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求使方程存在两个实数解时,的取值范围;

2)设,函数.若对任意,总存在,使得,求实数的取值范围.

【答案】(1);(2).

【解析】

1)求出导函数,可得函数在区间上单调递增,在上单调递减,求得,利用可得结果;(2)由(1)知,设的值域为,因为对任意,总存在,使得,等价于.利用导数研究函数的单调性,求出的值域,根据包含关系列不等式求解即可,

1.

,得;令,得

所以函数在区间上单调递增,在上单调递减,

所以,又

要使方程存在两个实数解,则

解得.

2)由(1)知,设的值域为,因为对任意,总存在,使得,所以.

因为,所以

时,上恒成立,所以上单调递减,

,不可能满足.

时,由于

,即上单调递减,在上单调递增,

,又,要使,则必须有,化简得,解得,又,所以.

,即上单调递减,不可能满足.

综上,实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是由非负整数组成的无穷数列,该数列前n项的最大值记为,第n项之后的各项的最小值记为,设.

1)若,是一个周期为4的数列,写出的值;

2)设d为非负整数,证明:)的充要条件是是公差为d的等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面四边形中(图1),的中点,,且,现将此平面四边形沿折起,使得二面角为直二面角,得到一个多面体,为平面内一点,且为正方形(图2),分别为的中点.

1)求证:平面//平面

2)在线段上是否存在一点,使得平面与平面所成二面角的余弦值为?若存在,求出线段的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的平面内,若函数的图象与轴围成一个封闭的区域,将区域沿轴的正方向平移8个单位长度,得到几何体如图一,现有一个与之等高的圆柱如图二,其底面积与区域的面积相等,则此圆柱的体积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,点中点,且,现将三角形沿折起,使点到达点的位置,且与平面所成的角为.

(1)求证:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前n项和为,公差为

,求数列的通项公式;

是否存在dn使成立?若存在,试找出所有满足条件的dn的值,并求出数列的通项公式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线,若直线上存在点,过点引圆的两条切线,使得,则实数的取值范围是( )

A. B. [,]

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在下列四个正方体中,AB为正方体的两个顶点,MNQ为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不垂直的是  

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 )的焦点为 在抛物线直线 与抛物线 交于 两点 为坐标原点.

(1)求抛物线 的方程

(2)求 的面积.

查看答案和解析>>

同步练习册答案