精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ax-5 (x>6)
(4-
a
2
)x+4 (x≤6)
是在R上是单调递增函数,则实数a的取值范围是
[7,8)
[7,8)
分析:由已知中函数f(x)=
ax-5 (x>6)
(4-
a
2
)x+4 (x≤6)
是在R上是单调递增函数,根据指数函数与一次函数单调性与参数的关系,我们可得一次函数的一次项系数大于0,且指数函数的底数大于1,且在x=6时,第一个解析式对应的函数值不小于第二段函数解析式对应的函数值.
解答:解:若函数f(x)=
ax-5 (x>6)
(4-
a
2
)x+4 (x≤6)
是在R上是单调递增函数,
a>1
4-
a
2
>0
a6-5≥(4-
a
2
)•6+4

解得7≤a<8
故答案为:[7,8)
点评:本题考查的知识点是函数单调性的性质,其中根据指数函数和一次函数的单调性,及分段函数单调性的性质,构造关于a的不等式组是解答本题的关键.但在解答过程中,易忽略在x=6时,第一个解析式对应的函数值不小于第二段函数解析式对应的函数值,而错解为(1,8)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案