精英家教网 > 高中数学 > 题目详情
如图所示,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为   
【答案】分析:由已知中在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,我们易将几何体分解为三棱锥E-ADG,三棱柱ADG-BCH,三棱锥F-HBC三个部分,分别计算出三部分的体积,加在一起即可得到多面体的体积.
解答:解:过AD做底面ABCD垂直的平面交EF于G点
过BC做底面ABCD垂直的平面交EF于H点
则多面体ABCDEF被分为三棱锥E-ADG,三棱柱ADG-BCH,三棱锥F-HBC三个部分
由ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,
易得EG=HF=,GH=1
S△ADG=S△BCH=

∴多面体ABCDEF的体积V=2×=
故答案为:
点评:本题考查的知识点是组合几何体的体积问题,其中对几何体进行合理的划分,从面能便捷的计算出基本几何体的体积是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:单元双测 同步达标活页试卷 高二数学(下A) 人教版 题型:013

如图所示,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF∥AB,EF=,EF与面AC的距离为2,则该多面体的体积为

[  ]

A.

B.5

C.6

D.

查看答案和解析>>

科目:高中数学 来源:全优设计必修二数学苏教版 苏教版 题型:044

正方体是常见并且重要的多面体,对它的研究将有助于我们对立体几何一些概念的理解和掌握.如图所示,在正方体AC1中,E、F、G、H分别是所在棱的中点,请思考并回答下列问题:

(1)点E、F、G、H共面吗?

(2)直线EF、GH、DG能交于一点吗?

(3)若E、F、G、H四点共面,怎样才能画出过四点E、F、G、H的平面与正方体的截面?

(4)若正方形的棱长为a,那么(3)中的截面面积是多少?

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:013

如图所示,在多面体ABCDEF中,已知ABCD是边长为3的正方形,EF∥AB,,EF与面AC的距离为2,则该多面体的体积为

[  ]

A.
B.5
C.6
D.

查看答案和解析>>

科目:高中数学 来源: 题型:013

如图所示,在多面体ABCDEF中,已知ABCD是边长为3的正方形,EFABEF与面AC的距离为2,则该多面体的体积为

[  ]

A

B5

C6

D

查看答案和解析>>

科目:高中数学 来源:同步题 题型:单选题

如图所示,在直三棱柱ABC-A1B1C1中,AB=AC=,BB1=BC=6,E、F为侧棱AA1上的两点,且EF=3,则多面体BB1C1CEF的体积为

[     ]

A.30
B.18
C.15
D.12

查看答案和解析>>

同步练习册答案