精英家教网 > 高中数学 > 题目详情
11.△ABC是等腰三角形,∠ABC=120°,以A、B为焦点且过点C的双曲线离心率为$\frac{\sqrt{3}+1}{2}$.

分析 先求出边AC的长,在利用双曲线的定义,求出离心率.

解答 解:由题意知,AB=2c,又△ABC中,BC=AB,∠ABC=120°,
∴AC=2$\sqrt{3}$c,∵双曲线以A,B为焦点且过点C,由双曲线的定义知,
AC-BC=2a,即:2$\sqrt{3}$c-2c=2a,
∴$\frac{c}{a}$=$\frac{\sqrt{3}+1}{2}$,即:双曲线的离心率为$\frac{\sqrt{3}+1}{2}$.
故答案为$\frac{\sqrt{3}+1}{2}$.

点评 本题考查双曲线的有关性质和双曲线定义的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知甲、乙、丙三人组成考察小组,每个组员最多可以携带供本人在沙漠中生存36天的水和食物,且计划每天向沙漠深处走30公里,每个人都可以在沙漠中将部分水和食物交给其他人然后独自返回.若组员甲与其他两个人合作,且要求三个人都能够安全返回,则甲最远能深入沙漠900公里.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如果角θ的终边经过点(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),则θ=2kπ+$\frac{5}{6}$π(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=sin(-2x+φ),(0<φ<π)图象的一个对称中心为($\frac{π}{3}$,0),则φ=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(sinx)=cos2x-1,则f(cos15°)=(  )
A.$-\frac{1}{2}$B.$-\frac{3}{2}$C.$-\frac{{\sqrt{3}}}{2}-1$D.$\frac{{\sqrt{3}}}{2}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点P(x,y)的坐标满足x2+y2-2y=0,则$u=\frac{y+1}{x}$的取值范围是(  )
A.$-\sqrt{3}≤u≤\sqrt{3}$B.$u≥\sqrt{3}$或$u≤-\sqrt{3}$C.$-\frac{{\sqrt{3}}}{3}≤u≤\frac{{\sqrt{3}}}{3}$D.$u≥\frac{{\sqrt{3}}}{3}$或$u≤-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列函数的值.
(1)求y=(x+1)(x+2)(x+3)的导数
(2)${∫}_{0}^{1}$(x-x2)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义在(-1,1]上的函数f(x)满足f(x)+1=$\frac{1}{f(x+1)}$,当x∈[0,1]时,f(x)=x,若函数g(x)=|f(x)-$\frac{1}{2}$|-mx-m+1在(-1,1]内恰有3个零点,则实数m的取值范围是(  )
A.($\frac{3}{2}$,+∞)B.($\frac{3}{2}$,$\frac{25}{8}$)C.($\frac{3}{2}$,$\frac{25}{16}$)D.($\frac{2}{3}$,$\frac{3}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图1,在△ABC中,AC=2,∠ACB=90°,∠ABC=30°,P是AB边的中点,现把△ACP沿CP折成如图2所示的三棱锥A-BCP,使得$AB=\sqrt{10}$.
(1)求证:平面ACP⊥平面BCP;
(2)求平面ABC与平面ABP夹角的余弦值.

查看答案和解析>>

同步练习册答案