精英家教网 > 高中数学 > 题目详情

【题目】甲,乙两人玩摸球游戏,每两局为一轮,每局游戏的规则如下:甲,乙两人均从装有4只红球、1只黑球的袋中轮流不放回摸取1只球,摸到黑球的人获胜,并结束该局.

(1)若在一局中甲先摸,求甲在该局获胜的概率;

(2)若在一轮游戏中约定:第一局甲先摸,第二局乙先摸,每一局先摸并获胜的人得1分,后摸井获胜的人得2分,未获胜的人得0分,求此轮游戏中甲得分X的概率分布及数学期望.

【答案】(1) (2)见解析

【解析】

1)利用古典概型的概率公式求得甲在该局获胜的概率值;

2)由题意知随机变量X的可能取值,求出对应的概率值,写出分布列,计算数学期望值.

(1)记“一局中甲先摸,甲在该局获胜”为事件A,共有三种情况:黑球在1号、3 号或5号位置,共有3种,而黑球的位置有5种.

所以.

答:甲在该局获胜的概率为.

(2)随机变量

,

所以X的概率分布为:

X

0

1

2

3

P

数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为节能环保,推进新能源汽车推广和应用,对购买纯电动汽车的用户进行财政补贴. 某地补贴政策如下(表示纯电续航里程):

三个纯电动汽车4s店分别销售不同品牌的纯电动汽车,在一个月内它们的销售情况如下: (每位客户只能购买一辆纯电动汽车

(Ⅰ)从上述购买纯电动汽车的客户中随机选一人,求此人购买的是店纯电动汽车且享受补贴不低于3.5万元的概率;

(Ⅱ)从购买店纯电动汽车的客户中按分层抽样的方法随机选6人,再从这6人中随机选2人,进行使用满意度的调查,求这两人享受补贴恰好相同的概率;

(Ⅲ)分别用表示购买店和店纯电动汽车客户享受补贴的平均值,比较的大小.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】研究变量得到一组样本数据,进行回归分析,有以下结论

①残差图中残差点所在的水平带状区域越窄,则回归方程的预报精确度越高;

②用相关指数来刻画回归效果,越小说明拟合效果越好;

③在回归直线方程中,当变量每增加1个单位时,变量就增加2个单位

④若变量之间的相关系数为,则变量之间的负相关很强

以上正确说法的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,A是椭圆的左顶点,点P,Q在椭圆上且均在x轴上方.

(1)若直线AP与OP垂直,求点P的坐标;

(2)若直线AP,AQ的斜率之积为,求直线PQ的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,求函数的单调增区间;

若函数上是增函数,求实数a的取值范围;

,且对任意,都有,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生男生女都一样,女儿也是传后人.由于某些地区仍然存在封建传统思想,头胎的男女情况可能会影响生二孩的意愿,现随机抽取某地200户家庭进行调查统计.200户家庭中,头胎为女孩的频率为0.5,生二孩的频率为0.525,其中头胎生女孩且生二孩的家庭数为60.

1)完成下列列联表:

生二孩

不生二孩

合计

头胎为女孩

60

头胎为男孩

合计

200

2)判断能否有的把握认为是否生二孩与头胎的男女情况有关;附:

0,15

0.05

0.01

0.0012.0

k

2.072

3.841

6.635

10.828

(其中).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据以往的经验,某工程施工期间的降水量(单位:)对工期的影响如下表:

降水量

工期延误天数

历年气象资料表明,该工程施工期间降水量小于的概率分别为,求:

1)在降水量至少是的条件下,工期延误不超过天的概率;

2)工期延误天数的均值与方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,图2是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级, 一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是( )

①1月至8月空气合格天数超过20天的月份有5个

②第二季度与第一季度相比,空气达标天数的比重下降了

③8月是空气质量最好的一个月

④6月份的空气质量最差

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

同步练习册答案