精英家教网 > 高中数学 > 题目详情
19.圆C1的方程是${(x-3)^2}+{y^2}=\frac{4}{25}$,圆C2的方程是$(x-3-cosθ{)^2}+(y-sinθ{)^2}=\frac{1}{25}(θ∈R)$,过C2上任意一点P作圆C1的两条切线PM,PN,切点分别为M、N,则∠MPN的最大正切值是$\frac{4\sqrt{2}}{7}$.

分析 ∠MPN最大时,|PC1|最大,最大为|C1C2|+$\frac{1}{5}$=$\frac{6}{5}$,利用正切公式,即可求出∠MPN的最大正切值.

解答 解:${(x-3)^2}+{y^2}=\frac{4}{25}$的圆心C1(3,0),半径等于$\frac{2}{5}$,圆C2的方程是$(x-3-cosθ{)^2}+(y-sinθ{)^2}=\frac{1}{25}(θ∈R)$,圆心C2(3+cosθ,sinθ),半径等于$\frac{1}{5}$.
∠MPN最大时,|PC1|最大,最大为|C1C2|+$\frac{1}{5}$=$\frac{6}{5}$,
∴PM=$\sqrt{\frac{36}{25}-\frac{4}{25}}$=$\frac{4\sqrt{2}}{5}$,
∴tan∠MPC1=$\frac{\sqrt{2}}{4}$,
∴tan∠MPN=$\frac{2×\frac{\sqrt{2}}{4}}{1-(\frac{\sqrt{2}}{4})^{2}}$=$\frac{4\sqrt{2}}{7}$.
故答案为:$\frac{4\sqrt{2}}{7}$.

点评 本题考查∠MPN的最大正切值,考查圆与圆的位置关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.某几何体的三视图如图所示,求该几何体的表面积、体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知抛物线y2=2px(p>0)的焦点为F,准线为l,过点F的直线交抛物线于A,B两点,过点A作准线l的垂线,垂足为E,当A点的坐标为(3,y1)时,△AEF为正三角形,则p为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合$M=\left\{{({x,y})\left|{\frac{x^2}{9}+\frac{y^2}{4}=1}\right.}\right\}$,N={(x,y)|y=kx+b},若?k∈R,使得M∩N=∅成立,则实数b的取值范围是(  )
A.[-3,3]B.(-∞,-3)∪(3,+∞)C.[-2,2]D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{1}{2}$,则双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的离心率是(  )
A.2B.$\frac{{\sqrt{5}}}{2}$C.$\frac{{\sqrt{7}}}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.三个函数:y=cosx,y=sinx,y=tanx,从中随机抽取一个函数,则抽出的函数是奇函数的概率为(  )
A.$\frac{1}{3}$B.0C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}中,a1=1,an+1=2an+1.
(1)求a2,a3,a4的值;
(2)若bn=an+1,求证:数列{bn}是等比数列;
(3)求数列{an}得通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知两点A(-1,0),B(2,1),直线l过点P(0,-1)且与线段AB有公共点,则直线l的斜率k的取值范围是(  )
A.[-1,1]B.(-∞,-1]∪[1,+∞)C.[-1,0)∪(0,1]D.[-1,0)∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.命题P:关于x的不等式x2+ax+1>0对一切x∈R恒成立,命题q:方程$\frac{{x}^{2}}{a-4}$+$\frac{{y}^{2}}{a+2}$=1表示双曲线,若p∨q为真命题,p∧q为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案