分析 (1)由条件利用诱导公式化简f(α)的解析式,可得结果.
(2)由条件利用同角三角函数的基本关系、诱导公式求得cosα的值,可得f(α)的值.
解答 解:(1)∵已知α是第三象限角,∴f(α)=$\frac{sin(\frac{3π}{2}-α)cos(\frac{π}{2}+α)tan(-α+π)}{tan(α-2π)sin(-α-π)}$=$\frac{cosα•(-sinα)•(-tanα)}{tanα•sinα}$=cosα.
(2)∵cos($α-\frac{3π}{2}$)=-sinα=$\frac{1}{5}$,∴sinα=-$\frac{1}{5}$,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{2\sqrt{6}}{5}$,
∴f(α)=cosα=-$\frac{2\sqrt{6}}{5}$.
点评 本题主要考查同角三角函数的基本关系、诱导公式的应用,以及三角函数在各个象限中的符号,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | M=N | B. | M?N | C. | M?N | D. | M∩N=∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ¬p | B. | p∧q | C. | (¬p)∨q | D. | p∧(¬q) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{2}}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | ±$\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com