精英家教网 > 高中数学 > 题目详情
13.已知α是第三象限角,f(α)=$\frac{sin(\frac{3π}{2}-α)cos(\frac{π}{2}+α)tan(-α+π)}{tan(α-2π)sin(-α-π)}$.
(1)化简f(α);
(2)若cos($α-\frac{3π}{2}$)=$\frac{1}{5}$,求f(α).

分析 (1)由条件利用诱导公式化简f(α)的解析式,可得结果.
(2)由条件利用同角三角函数的基本关系、诱导公式求得cosα的值,可得f(α)的值.

解答 解:(1)∵已知α是第三象限角,∴f(α)=$\frac{sin(\frac{3π}{2}-α)cos(\frac{π}{2}+α)tan(-α+π)}{tan(α-2π)sin(-α-π)}$=$\frac{cosα•(-sinα)•(-tanα)}{tanα•sinα}$=cosα.
(2)∵cos($α-\frac{3π}{2}$)=-sinα=$\frac{1}{5}$,∴sinα=-$\frac{1}{5}$,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{2\sqrt{6}}{5}$,
∴f(α)=cosα=-$\frac{2\sqrt{6}}{5}$.

点评 本题主要考查同角三角函数的基本关系、诱导公式的应用,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.定义在R上的函数f(x)满足f(1)=1,且对任意x∈R都有f$′(x)<\frac{1}{2}$,则不等式f(x3)$>\frac{{x}^{3}+1}{2}$的解集为(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知圆O:x2+y2=13,过点(1,2)作直线交圆O于A,B两点,则AB的最小值为4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.集合M={x|x=$\frac{kπ}{2}+\frac{π}{4}$,k∈Z},N={x|x=$\frac{kπ}{4}+\frac{π}{2}$,k∈Z},则(  )
A.M=NB.M?NC.M?ND.M∩N=∅

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足a1=$\frac{3}{2}$,an+1=2-$\frac{1}{{a}_{n}}$.
(1)求$\frac{1}{{a}_{1}-1}$的值;
(2)证明:数列{$\frac{1}{{a}_{n}-1}$}为等差数列,并求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题p:?m∈R使得函数f(x)=m•2x+1有零点;命题q:?x∈($\frac{1}{2}$,+∞),x+log2x>0,则下列命题正确的是(  )
A.¬pB.p∧qC.(¬p)∨qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知sin($\frac{π}{2}$+θ)=$\frac{1}{3}$,则2sin2$\frac{θ}{2}$-1等于(  )
A.$\frac{\sqrt{2}}{3}$B.-$\frac{1}{3}$C.$\frac{1}{3}$D.±$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.当实数k为何值时,圆C1:x2+y2+4x-6y+12=0和圆C2:x2+y2-2x-14y+k=0分别相交、相切、相离?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知下列命题:
①若a>0,则方程ax2+2x=0有解;
②“等腰三角形都相似”的逆命题;
③“若x-$\frac{3}{2}$是有理数,则x是无理数”的逆否命题;
④“若a>1,b>1,则a-b>2”的否命题.
其中真命题的序号是①.

查看答案和解析>>

同步练习册答案