精英家教网 > 高中数学 > 题目详情

【题目】已知函数
(1)求该函数的最小正周期;
(2)求该函数的单调递减区间;
(3)用“五点法”作出该函数在长度为一个周期的闭区间上的简图.

【答案】
(1)解:∵ =3sin(2x﹣ ),

∴函数的最小正周期T= =π.


(2)解:∵令2kπ+ ≤2x﹣ ≤2kπ+ ,k∈Z,解得:kπ+ ≤x≤kπ+ ,k∈Z,

∴函数的单调递减区间为:[kπ+ ,kπ+ ],k∈Z,


(3)解:如图所示:


【解析】(3)列表:

x

2x﹣

0

π

y

0

3

0

﹣3

0

描点、连线如图所示:

【考点精析】认真审题,首先需要了解五点法作函数y=Asin(ωx+φ)的图象(描点法及其特例—五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线)).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某县一中计划把一块边长为20米的等边三角形ABC的边角地辟为植物新品种实验基地,图中DE需把基地分成面积相等的两部分,D在AB上,E在AC上.
(1)设AD=x(x≥10),ED=y,试用x表示y的函数关系式;
(2)如果DE是灌溉输水管道的位置,为了节约,则希望它最短,DE的位置应该在哪里?如果DE是参观线路,则希望它最长,DE的位置又应该在哪里?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x+1,x∈N* , 若x0 , n∈N* , 使f(x0)+f(x0+1)+…+f(x0+n)=63成立,则称(x0 , n)为函数f(x)的一个“生成点”,函数f(x)的“生成点”共有(
A.2个
B.3个
C.4个
D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=2pxp>0)上的点A(4,t)到其焦点F的距离为5.

(Ⅰ)求抛物线C的方程;

(Ⅱ)过点F作直线l,使得抛物线C上恰有三个点到直线1的距离为2,求直线1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技能大赛,在同样条件下经过多轮测试,成绩分析如表所示,根据表中数据判断,最佳人选为( ) 成绩分析表

平均成绩

96

96

85

85

标准差s

4

2

4

2


A.甲
B.乙
C.丙
D.丁

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1、F2为双曲线的焦点,过F2垂直于实轴的直线交双曲线于A、B两点,BF1交y轴于点C,若AC⊥BF1 , 则双曲线的离心率为(
A.
B.
C.2
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A(x1 , y1),B(x2 , y2)是椭圆 上的两点,已知向量 =( ), =( ),若 =0且椭圆的离心率e= ,短轴长为2,O为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的四棱锥 中,四边形ABCD为正方形, 平面PAB,且 分别为 的中点, .

证明:
(1) ;
(2)若 ,求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别是角A,B,C的对边,△ABC的面积为S,(a2+b2)tanC=8S,且sinAcosB=2cosAsinB,则cosA=

查看答案和解析>>

同步练习册答案