精英家教网 > 高中数学 > 题目详情
12.若函数f(x)满足f(2x-1)=x+1,则f(3)等于(  )
A.3B.4C.5D.6

分析 由函数f(x)满足f(2x-1)=x+1,利用f(3)=f(2×2-1),能求出结果.

解答 解:∵函数f(x)满足f(2x-1)=x+1,
∴f(3)=f(2×2-1)=2+1=3.
故选:A.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.直线$\left\{\begin{array}{l}x=1-\frac{1}{2}t\\ y=-3\sqrt{3}+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数)和圆x2+y2=16交于A,B两点,则AB的中点坐标为(  )
A.(3,-3)B.$(-\sqrt{3},3)$C.$(\sqrt{3},-3)$D.(-$\frac{3}{2}$,-$\frac{\sqrt{3}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(2x-3)4=a0+a1x+a2x2+a3x3+a4x4,求
(1)a1+a2+a3+a4
(2)(a0+a2+a42-(a1+a32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x-a|+|x-3a|.
(1)若f(x)的最小值为2,求a的值;
(2)若对?x∈R,?a∈[-1,1],使得不等式m2-|m|-f(x)<0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.从5个不同的小球中选4个放入3个箱子中,要求第一个箱子放入1个小球,第二个箱子放入2个小球,第三个箱子放入1个小球,则不同的放法共有(  )
A.120种B.96种C.60种D.48种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在多面体ABCDE中,ABCD是矩形,平面ABCD⊥平面CDE,CD⊥DE,2DE=2DC=BC,F是棱BC的中点.
(1)证明:AF⊥EF;
(2)已知CD=1,求点B到平面AEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.8($\sqrt{3}$+1)+πB.8($\sqrt{3}$+1)+2πC.8($\sqrt{3}$+1)一πD.8($\sqrt{3}$+l)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知实数x,y满足不等式组$\left\{\begin{array}{l}x-3y+5≥0\\ 2x+y-4≤0\\ y+2≥0\end{array}\right.$则z=x+y的最小值为-13.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.有下列四个说法:
①命题“$?{x_0}∈R,{x_0}^2-{x_0}>0$”的否定是“?x∈R,x2-x≤0”;
②已知命题p∧q为假,则p,q都假;
③命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;
④“x=-1”是“x2-5x-6=0”的必要不充分条件;
其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案