精英家教网 > 高中数学 > 题目详情

【题目】在等比数列{an}中,a2=3,a5=81. (Ⅰ)求an
(Ⅱ)设bn=log3an , 求数列{bn}的前n项和Sn

【答案】解:(Ⅰ)设等比数列{an}的公比为q, 由a2=3,a5=81,得
,解得

(Ⅱ)∵ ,bn=log3an

则数列{bn}的首项为b1=0,
由bn﹣bn1=n﹣1﹣(n﹣2)=1(n≥2),
可知数列{bn}是以1为公差的等差数列.

【解析】(Ⅰ)设出等比数列的首项和公比,由已知列式求解首项和公比,则其通项公式可求;(Ⅱ)把(Ⅰ)中求得的an代入bn=log3an , 得到数列{bn}的通项公式,由此得到数列{bn}是以0为首项,以1为公差的等差数列,由等差数列的前n项和公式得答案.
【考点精析】解答此题的关键在于理解等差数列的前n项和公式的相关知识,掌握前n项和公式:,以及对等比数列的通项公式(及其变式)的理解,了解通项公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,多面体中,四边形是菱形, 相交于 ,点在平面上的射影恰好是线段的中点.

(Ⅰ)求证: 平面

(Ⅱ)若直线与平面所成的角为,求平面与平面所成角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知OPQ是半径为1,圆心角为θ的扇形,A是扇形弧PQ上的动点,ABOQ,OPAB交于点B,ACOP,OQAC交于点C.

(1)θ=,求点A的位置,使矩形ABOC的面积最大,并求出这个最大面积;

(2)θ=,求点A的位置,使平行四边形ABOC的面积最大,并求出这个最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sin ,sin ), =(cos ,cos ),且向量 与向量 共线.
(1)求证:sin( )=0;
(2)若记函数f(x)=sin( ),求函数f(x)的对称轴方程;
(3)求f(1)+f(2)+f(3)+…+f(2013)的值;
(4)如果已知角0<A<B<π,且A+B+C=π,满足f( )=f( )= ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地。目前德国汉堡、美国波士顿等申办城市因市民担心赛事费用超支而相继退出。某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:

(1)根据已有数据,把表格数据填写完整;

(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?

(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.

附: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求上的最小值;

2)若关于的不等式只有两个整数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现阶段全国多地空气质量指数“爆表”.为探究车流量与浓度是否相关,现对北方某中心城市的车流量最大的地区进行检测,现采集到月某天个不同时段车流量与浓度的数据,如下表:

车流量(万辆/小时)

浓度 (微克/立方米)

(1)根据上表中的数据,用最小二乘法求出关于的线性回归方程;

(2)规定当浓度平均值在,空气质量等级为优;当浓度平均值在,空气质量等级为良;为使该城市空气质量为优和良,利用该回归方程,预测要将车流量控制在每小时多少万辆内(结果以万辆做单位,保留整数).

附:回归直线方程: ,其中 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨,生产每吨乙产品要用A原料1吨,B原料3吨。销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨,那么该企业可获得最大利润是___________万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

1)当时,解不等式

2)若关于的方程的解集中恰好有一个元素,求的取值范围;

(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.

查看答案和解析>>

同步练习册答案