精英家教网 > 高中数学 > 题目详情
如图,空间四边形ABCD中,E,F,G,H分别是直线AB,BC,CD,DA上的点,如果EF∩GH=Q,则点Q在直线(  )上.
分析:利用线面位置关系即可知道分别在两个相交平面的两相交直线的交点必在两平面的交线上.
解答:解:如图所示:
∵EF?平面ABC,GH?平面ACD,平面ABC∩平面ACD=AC,
∴EF∩GH=Q必在直线AC上.
故选C.
点评:正确理解线面位置关系是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,空间四边形ABCD中,M、G分别是BC、CD的中点,则
AB
+
1
2
BC
+
1
2
BD
等(  )
A、
AD
B、
GA
C、
AG
D、
MG

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,空间四边形ABCD的对棱AD、BC成60°的角,且AD=BC=4,平行于AD与BC的截面分别交AB、AC、CD、BD于E、F、G、H.
(1)求证:四边形EFGH为平行四边形;
(2)E在AB的何处时截面EFGH的面积最大?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.
(1)求证:四边形EGGH是平行四边形.
(2)求证:EF∥平面ADC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,空间四边形ABCD中,AB、BC、CD的中点分别是P、Q、R,且PQ=
3
,QR=1,PR=2
,那么异面直线BD和PR所成的角是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,空间四边形ABCD中,E、F分别是AB、AD的中点,G、H分别在BC、CD上,且BG:GC=DH:HC=1:2
(1)求证:E、F、G、H四点共面.
(2)设EG与HF交于点P,求证:P、A、C三点共线.

查看答案和解析>>

同步练习册答案