分析 按照三视图的作法:上下、左右、前后三个方向的射影,四边形的四个顶点在三个投影面上的射影,再将其连接即可得到三个视图的形状,按此规则对题设中所给的四图形进行判断即可.
解答 解:因为正方体是对称的几何体,
所以四边形BFD1E在该正方体的面上的射影可分为:自上而下、自左至右、由前及后三个方向的射影,
也就是在面ABCD、面ABB1A1、面ADD1A1上的射影.
四边形BFD1E在面ABCD和面ABB1A1上的射影相同,如图②所示;
四边形BFD1E在该正方体对角面的ABC1D1内,它在面ADD1A1上的射影显然是一条线段,如图③所示.
故四边形BFD1E在该正方形上的平行投影不可能为①④,
故答案为:①④.
点评 本题考查简单空间图形的三视图,考查根据作三视图的规则来作出三个视图的能力,三视图是高考的新增考点,不时出现在高考试题中,应予以重视.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com