精英家教网 > 高中数学 > 题目详情
20.某中学高一年级共8个班,现从高一年级选10名同学组成社区服务小组,其中高一(1)班选取3名同学,其它各班各选取1名同学.现从这10名同学中随机选取3名同学,到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).
(Ⅰ)求选出的3名同学来自不同班级的概率;
(Ⅱ)设X为选出同学中高一(1)班同学的人数,求随机变量X的分布列和数学期望.

分析 (Ⅰ)设“选出的3名同学来自不同班级”为事件A,利用排列组合知识能求出选出的3名同学来自班级的概率.
(Ⅱ)随机变量X的所有可能值为0,1,2,3,分别求出相应的概率,由此能求出随机变量X的分布列和随机变量X的数学期望E(X).

解答 (本小题满分13分)
解:(Ⅰ)设“选出的3名同学来自不同班级”为事件A,
则P(A)=$\frac{{C}_{3}^{1}{C}_{7}^{2}+{C}_{3}^{0}{C}_{7}^{3}}{{C}_{10}^{3}}$=$\frac{49}{60}$.
所以选出的3名同学来自不同班级的概率为$\frac{49}{60}$.…(5分)
(Ⅱ)随机变量X的所有可能值为0,1,2,3,
P(X=0)=$\frac{{C}_{3}^{0}{C}_{7}^{3}}{{C}_{10}^{3}}$=$\frac{7}{24}$,
P(X=1)=$\frac{{C}_{3}^{1}{C}_{7}^{2}}{{C}_{10}^{3}}$=$\frac{21}{40}$,
P(X=2)=$\frac{{C}_{3}^{2}{C}_{7}^{1}}{{C}_{10}^{3}}$=$\frac{7}{40}$,
P(X=3)=$\frac{{C}_{3}^{3}{C}_{7}^{0}}{{C}_{10}^{3}}$=$\frac{1}{120}$,
∴随机变量X的分布列是

X0123
P$\frac{7}{24}$$\frac{21}{40}$$\frac{7}{40}$$\frac{1}{120}$
随机变量X的数学期望E(X)=$0×\frac{7}{24}+1×\frac{21}{40}+2×\frac{7}{40}+3×\frac{1}{120}$=$\frac{9}{10}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列的数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,在平面四边形ABCD中,AB=5$\sqrt{2}$,∠CBD=75°,∠ABD=30°,∠CAB=45°,∠CAD=60°.
(I)求AC的长;
(Ⅱ)求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在平面直角坐标系xOy中,已知点O(0,0),A(3,0),动点P满足2PO=PA,则点P的轨迹方程是x2+y2+2x-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线x+ay-2=0与圆心为C的圆(x-a)2+(y-1)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=4±$\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=2sin(2x+$\frac{π}{6}$)+1的最小正周期是π,最小值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知A,B为圆C:(x-m)2+(y-n)2=9(m,n∈R)上两个不同的点(C为圆心),且满足$|\overrightarrow{CA}+\overrightarrow{CB}|=\sqrt{13}$,则|AB|=(  )
A.$\sqrt{23}$B.$\frac{{\sqrt{23}}}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,A,B,C,D是平面上的任意四点,下列式子中正确的是(  )
A.$\overrightarrow{AB}$+$\overrightarrow{CD}$=$\overrightarrow{BC}$+$\overrightarrow{DA}$B.$\overrightarrow{AC}$+$\overrightarrow{BD}$=$\overrightarrow{BC}$+$\overrightarrow{AD}$C.$\overrightarrow{AC}$+$\overrightarrow{DB}$=$\overrightarrow{DC}$+$\overrightarrow{BA}$D.$\overrightarrow{AB}$+$\overrightarrow{DA}$=$\overrightarrow{AC}$+$\overrightarrow{DB}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}的首项a1=1,公差d≠0且a2,a4,a8成等比数列.数列{bn}的前n项和为Sn且Sn=2bn-2(n∈N*
(1)求数列{an}和{bn}的通项公式;
(2)设数列cn=$\frac{1}{{a}_{n}•{a}_{n+1}}$+log2bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设f(x)是定义域R上的增函数,?x,y∈R,f(x+y)=f(x)+f(y)-1,且f(3)=3,记an=f(n)(n∈N*),则数列{an}的前n项和Sn=$\frac{n(n+4)}{3}$.

查看答案和解析>>

同步练习册答案