精英家教网 > 高中数学 > 题目详情
18.要得到函数$y=3sin(2x+\frac{π}{3})$图象,只需要将函数$y=3cos(2x-\frac{π}{3})$的图象(  )
A.向左平移$\frac{π}{12}$个单位B.向右平移$\frac{π}{12}$个单位
C.向左平移$\frac{π}{6}$个单位D.向右平移$\frac{π}{6}$个单位

分析 由条件利用诱导公式,函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:∵函数y=3sin(2x+$\frac{π}{3}$)=3cos[$\frac{π}{2}$-(2x+$\frac{π}{3}$)]=3cos($\frac{π}{6}$-2x)=3cos(2x-$\frac{π}{6}$)=3cos[2(x-$\frac{π}{12}$)],
$y=3cos(2x-\frac{π}{3})$=3cos[2(x-$\frac{π}{6}$)]=3cos[2(x-$\frac{π}{12}$-$\frac{π}{12}$)],
∴把函数$y=3cos(2x-\frac{π}{3})$的图象向左平移$\frac{π}{12}$个单位,可得函数y=3sin(2x+$\frac{π}{3}$)的图象.
故选:A.

点评 本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.命题“?x∈R,x2+2x+3>0”的否定是?x0∈R,x02+2x0+3≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数y=log3x的反函数为y=g(x),则$g(\frac{1}{2})$的值是(  )
A.3B.${log_3}\frac{1}{2}$C.log32D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)对任意的x,y∈R,总有f(x+y)=f(x)+f(y).
(1)判断函数f(x)的奇偶性并证明;
(2)若x<0时恒有f(x)>0,判断函数f(x)的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知$\overrightarrow{e_1},\overrightarrow{e_2}$是两个不共线的向量,且$\overrightarrow a=\overrightarrow{e_1}+m\overrightarrow{e_2}$与$\overrightarrow b=-3\overrightarrow{e_1}-\overrightarrow{e_2}$共线,则m=(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某电脑公司2016年的各项经营总收入中电脑配件的收入为40万元,占全年经营总收入的40%,该公司预计2018年经营总收入要达到169万元,且计划从2016年到2018年每年经营总收入的年增长率相同,则2017年预计经营总收入为130万元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.长方体ABCD-A1B1C1D1的八个顶点落在球O的表面上,已知AB=3,AD=4,BB1=5,那么球O的表面积为(  )
A.25πB.200πC.100πD.50π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-x+12,x≥5}\\{{2}^{x},x<5}\end{array}\right.$,若f(f(a))=16,则 a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l1,l2方程分别为2x-y=0,x-2y+3=0,且l1,l2的交点为P.
(1)求过点P且与直线x+3y-5=0垂直的直线方程;
(2)若直线l过点P,且坐标原点到直线l的距离为1,求直线l的方程.

查看答案和解析>>

同步练习册答案