精英家教网 > 高中数学 > 题目详情

【题目】已知南北回归线的纬度为,设地球表面某地正午太阳高度角为为此时太阳直射纬度,为该地的纬度值,那么这三个量之间的关系是.当地夏半年取正值,冬半年取负值,如果在北半球某地(纬度为)的一幢高为的楼房北面盖一新楼,要使新楼一层正午的太阳全年不被前面的楼房遮挡,两楼的距离应不小于______(结果用含有的式子表示).

【答案】

【解析】

根据题意,要使新楼一层正午的太阳全年不被前面的楼房遮挡,应取太阳直射南回归线时的情况考虑,此时的太阳直射纬度为,依题意两楼的间距不小于MC,根据太阳高度角的定义,以及题设条件,解三角形,即得解.

如图:

设点ABC分别为太阳直射北回归线,赤道,南回归线时楼顶在地面上得投射点,要使新楼一层正午的太阳全年不被前面的楼房遮挡,应取太阳直射南回归线时的情况考虑,此时的太阳直射纬度为,依题意两楼的间距不小于MC,根据太阳高度角的定义得:

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个几何体的平面展开图如图所示,其中四边形 ABCD 为正方形, E F 分别为PB PC 的中点,在此几何体中,下面结论中一定正确的是(

A.直线 AE 与直线 DF 平行B.直线 AE 与直线 DF 异面

C.直线 BF 和平面 PAD 相交D.直线 DF 平面 PBC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若函数仅有个零点,则实数的取值范围为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,为直三棱柱,四边形为平行四边形, .

1)若,证明:四点共面,且

2)若,二面角的余弦值为,求直线与平面所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知底面中点.

1)求证:平面平面

2)若四棱锥的体积为1,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点为别为,且过点.

(1)求椭圆的标准方程;

(2)如图,点为椭圆上一动点(非长轴端点),的延长线与椭圆交于点的延长线与椭圆交于点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为垛积术”.现有高阶等差数列,其前7项分别为14814233654,则该数列的第19项为( )(注:

A.1624B.1024C.1198D.1560

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面ABCD是边长为3的正方形,平面ADEF⊥平面ABCDAFDEADDEAFDE.

1)求直线CA与平面BEF所成角的正弦值;

2)在线段AF上是否存在点M,使得二面角MBED的大小为60°?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求直线与曲线相切时,切点的坐标;

2)当时,恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案