精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sin2(ωx)﹣ (ω>0)的最小正周期为 ,若将其图象沿x轴向右平移a个单位(a>0),所得图象关于原点对称,则实数a的最小值为( )
A.
B.
C.
D.

【答案】D
【解析】解:∵f(x)=sin2(ωx)﹣
=
=﹣ cos2ωx,
= ,解得:ω=2,
∴f(x)=﹣ cos4x,
∵将函数f(x)图象沿x轴向右平移a个单位(a>0),得到的新函数为g(x)=﹣ cos(4x﹣4a),
∴cos4a=0,
∴4a=kπ+ ,k∈Z,
当k=0时,a的最小值为
故选:D.
【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数与常数,若恒成立,则称为函数的一个“P数对”,设函数的定义域为,且

(1)若的一个“P数对”,且,求常数的值;

(2)若(1,1)是的一个“P数对”,且上单调递增,求函数上的最大值与最小值;

(3)若(-2,0)是的一个“P数对”,且当时,,求k的值及在区间上的最大值与最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,C、D是以AB为直径的圆上两点,AB=2AD=2,AC=BC,F 是AB上一点,且AF=AB,将圆沿直径AB折起,使点C在平面ABD的射影E在BD上,已知,

(1)求证:AD⊥平面BCE;

(2)求三棱锥A﹣CFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,设命题p:函数y=ax在R上单调递减,q:函数y=且y>1恒成立,若p∧q为假,p∨q为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是几何体的平面展开图,其中四边形ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面4个结论:

直线BE与直线CF共面;②直线BE与直线AF异面

直线EF平面PBC;④平面BCE平面PAD.

其中正确的有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知菱形ABCD的边长为6,∠ABD=30°,点E、F分别在边BC、DC上,BC=2BE,CD=λCF.若 =﹣9,则λ的值为(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,函数图像上相邻的两个对称中心之间的距离为,且在处取到最小值.

(1)求函数的解析式;

(2)若将函数图象上所有点的横坐标伸长到原来的2(纵坐标不变),再将向左平移个单位,得到函数图象,求函数的单调递增区间。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.

(1)求f(x)的解析式;

(2)解不等式f(x)>2x+5.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的对称中心为原点O,焦点在x轴上,离心率为,且点在该椭圆上。

(I)求椭圆C的方程;

(II)过椭圆C的左焦点的直线l与椭圆C相交于两点,若的面积为,求圆心在原点O且与直线l相切的圆的方程。

查看答案和解析>>

同步练习册答案