【题目】2018年2月22日,在韩国平昌冬奥会短道速滑男子500米比赛中,中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造中国男子冰上竞速项目在冬奥会金牌零的突破.某高校为调查该校学生在冬奥会期间累计观看冬奥会的时间情况,收集了200位男生、100位女生累计观看冬奥会时间的样本数据(单位:小时).又在100位女生中随机抽取20个人,已知这20位女生的数据茎叶图如图所示.
(I)将这20位女生的时间数据分成8组,分组区间分别为,,…,,,完成频率分布直方图;
(II)以(I)中的频率作为概率,求1名女生观看冬奥会时间不少于30小时的概率;(III)以(I)中的频率估计100位女生中累计观看时间小于20个小时的人数,已知200位男生中累计观看时间小于20小时的男生有50人.请完成下面的列联表,并判断是否有99%的把握认为“该校学生观看冬奥会累计时间与性别有关”.
男生 | 女生 | 总计 | |
累计观看时间小于20小时 | |||
累计观看时间小于20小时 | |||
总计 | 300 |
附:().
【答案】(1)见解析.
(2).
(3)列联表见解析;有99%的把握认为“该校学生观看冬奥会累计时间与性别有关”.
【解析】分析:(1)根据提干茎叶图数据计算得到相应的频率,从而得到频率分布直方图;(2). 因为(1)中的频率为,以频率估计概率;(3)补充列联表,计算得到卡方值即可做出判断.
详解:
(1)由题意知样本容量为20,频率分布直方图为:
(2)因为(1)中的频率为,
所以1名女生观看冬奥会时间不少于30小时的概率为.
(3)因为(1)中的频率为,故可估计100位女生中累计观看时间小于20小时的人数是.
所以累计观看时间与性别列联表如下:
男生 | 女生 | 总计 | |
累计观看时间小于20小时 | 50 | 40 | 90 |
累计观看时间小于20小时 | 150 | 60 | 210 |
总计 | 200 | 100 | 300 |
结合列联表可算得
所以,有99%的把握认为“该校学生观看冬奥会累计时间与性别有关”.
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为 .(12分)
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班主任从本班名男生,名女生中随机抽取一个容量为的样本,对他们的数学及物理成绩进行分析,这名同学的数学及物理成绩(单位:分数)对应如下表:
学生序号 | |||||||
数学成绩 | |||||||
物理成绩 |
(1)根据以上数据,求物理成绩关于数学成绩的线性回归方程(系数均精确到),并预测班上某位数学成绩为分的同学的物理成绩(保留到整数);
(2)从物理成绩不低于分的样本学生中随机抽取人,求抽到的人数学成绩也不低于分的概率.
参考公式:
已经计算出:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为R,且f(2)=2,又函数f(x)的导函数y=f′(x)的图象如图所示,若两个正数a、b满足f(2a+b)<2,则 的取值范围是( )
A.( ,2)
B.(﹣∞, )∪(2,+∞)
C.(2,+∞)
D.(﹣∞, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为R,且f(2)=2,又函数f(x)的导函数y=f′(x)的图象如图所示,若两个正数a、b满足f(2a+b)<2,则 的取值范围是( )
A.( ,2)
B.(﹣∞, )∪(2,+∞)
C.(2,+∞)
D.(﹣∞, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,函数,是函数的导函数, 是自然对数的底数.
(1)当时,求导函数的最小值;
(2)若不等式对任意恒成立,求实数的最大值;
(3)若函数存在极大值与极小值,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象如图所示(其中是定义域为的函数的导函数),则以下说法错误的是( ).
A.
B. 当时,函数取得极大值
C. 方程与均有三个实数根
D. 当时,函数取得极小值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 =1(a>b>0)上的点到右焦点F的最小距离是 ﹣1,F到上顶点的距离为 ,点C(m,0)是线段OF上的一个动点.
(1)求椭圆的方程;
(2)是否存在过点F且与x轴不垂直的直线l与椭圆交于A、B两点,使得( + )⊥ ,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市食品药品监督管理局开展2019年春季校园餐饮安全检查,对本市的8所中学食堂进行了原料采购加工标准和卫生标准的检查和评分,其评分情况如下表所示:
中学编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
原料采购加工标准评分x | 100 | 95 | 93 | 83 | 82 | 75 | 70 | 66 |
卫生标准评分y | 87 | 84 | 83 | 82 | 81 | 79 | 77 | 75 |
(1)已知x与y之间具有线性相关关系,求y关于x的线性回归方程;(精确到0.1)
(2)现从8个被检查的中学食堂中任意抽取两个组成一组,若两个中学食堂的原料采购加工标准和卫生标准的评分均超过80分,则组成“对比标兵食堂”,求该组被评为“对比标兵食堂”的概率.
参考公式:,;
参考数据:,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com