精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论函数的单调性;

2)当时,判断并说明函数的零点个数.若函数所有零点均在区间内,求的最小值.

【答案】1)分类讨论,详见解析;(2存在两个零点,且的最小值为.

【解析】

1)对函数进行求导,根据的不同取值进行分类讨论,根据导函数的正负性,求出函数的单调性即可;

2)根据,结合的导数的性质进行分类讨论求解即可.

1的定义域为

时,

所以上单调递增:

时,

所以上单调递增:

时,令

(舍)

时,

时,

所以上单调递增,

上单调递减.

综上所述,当时,上单调递增:

时,上单调递增,

上单调递减.

(2)当时,

时,单调递增,

,故不存在零点:

时,

上单调递减,

所以

所以单调递增,

所以存在唯一,使得

时,

所以单调递减,

所以,存在使得

时,单调递增;

时,单调递减, .

因此,上恒成立,

故不存在零点.

时,

所以单调递减,

因为

所以单调递减,

所以存在唯一,使得.

时,

故不存在零点.

综上,存在两个零点,且

因此的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆,焦距为2,离心率.

1)求椭圆的标准方程;

2)过点作圆的切线,切点分别为,直线轴交于点,过点的直线交椭圆两点,点关于轴的对称点为,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品.现统计得到相关统计情况如下:

甲套设备的样本的频率分布直方图

乙套设备的样本的频数分布表

质量指标值

频数

1

6

19

18

5

1

1)根据上述所得统计数据,计算产品合格率,并对两套设备的优劣进行比较;

2)填写下面列联表,并根据列联表判断是否有95%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关.

甲套设备

乙套设备

合计

合格品

不合格品

合计

附:

0.15

0.10

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1是处在同-个平面内的两个全等的直角三角形,,连接是上一点,过,交于点,沿向上翻折,得到如图2所示的六面体

1)求证:

2)设若平面底面,若平面与平面所成角的余弦值为,求的值;

3)若平面底面,求六面体的体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)判断并说明函数的零点个数.若函数所有零点均在区间内,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

1)①求函数的单调区间;

②若满足,且.求证:

2)函数.若对任意,都有,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为,且在椭圆上运动,当点恰好在直线l:上时,的面积为.

1)求椭圆的方程;

2)作与平行的直线,与椭圆交于两点,且线段的中点为,若的斜率分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】移动支付(支付宝支付,微信支付等)开创了新的支付方式,使电子货币开始普及,为了了解习惯使用移动支付方式是否与年龄有关,对某地200人进行了问卷调查,得到数据如下:60岁以上的人群中,习惯使用移动支付的人数为30人;60岁及以下的人群中,不习惯使用移动支付的人数为40.已知在全部200人中,随机抽取一人,抽到习惯使用移动支付的人的概率为0.6.

1)完成如下的列联表,并判断是否有的把握认为习惯使用移动支付与年龄有关,并说明理由.

习惯使用移动支付

不习惯使用移动支付

合计(人数)

60岁以上

60岁及以下

合计(人数)

200

2)在习惯使用移动支付的60岁以上的人群中,每月移动支付的金额如下表:

每月支付金额

300以上

人数

15

5

现采用分层抽样的方法从中抽取6人,再从这6人中随机抽取2人,求这2人中有1人月支付金额超过3000元的概率.

附:,其中.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中正确的个数是(

①已知函数是一次函数,若数列通项公式为,则该数列是等差数列;

②若直线上有两个不同的点到平面的距离相等,则

③在中,“”是“”的必要不充分条件;

④若,则的最大值为2.

A.1B.2C.3D.0

查看答案和解析>>

同步练习册答案