分析 以A为原点,在平南ABC内过A作CB的平行线为x轴,AB为y轴,AS为z轴,建立空间直角坐标系,由此利用向量法能求出直线SB与AC所成角的余弦值.
解答 解:如图,以A为原点,在平南ABC内过A作CB的平行线为x轴,AB为y轴,AS为z轴,
建立空间直角坐标系,
由已知得A(0,0,0),B(0,4,0),C(-3,4,0),S(0,0,4),
$\overrightarrow{SB}$=(0,4,-4),$\overrightarrow{AC}$=(-3,4,0),
设直线SB与AC所成角为θ,
cosθ=|cos<$\overrightarrow{SB}$,$\overrightarrow{AC}$>|=|$\frac{\overrightarrow{SB}•\overrightarrow{AC}}{|\overrightarrow{SB}|•|\overrightarrow{AC}|}$|=|$\frac{16}{4\sqrt{2}•5}$|=$\frac{2\sqrt{2}}{5}$.
∴直线SB与AC所成角的余弦值为$\frac{2\sqrt{2}}{5}$.
故答案为:$\frac{2\sqrt{2}}{5}$.
点评 本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
A. | $\frac{{x}^{2}}{\frac{1}{4}}$+$\frac{{y}^{2}}{1}$=1 | B. | $\frac{{x}^{2}}{1}$+$\frac{{y}^{2}}{\frac{1}{4}}$=1 | C. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{1}$=1 | D. | $\frac{{x}^{2}}{1}$+$\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x-y-1=0 | B. | x+y-1=0 | C. | $\sqrt{3}$x+y-$\sqrt{3}$=0 | D. | $\sqrt{3}$x-y+$\sqrt{3}$=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com