精英家教网 > 高中数学 > 题目详情

【题目】已知数列的项,其中,其前项和为,记除以3余数为1的数列的个数构成的数列为.

1)求的值;

2)求数列的通项公式,并化简.

【答案】12

【解析】

1)根据题意这6项中包含2151,其余均为2,这样的数列共有个,即可得解;

2)这项中包含2151……1,其余均为2,所以,结合除以3余数为20的数列的个数构成的数列分别为,根据规律猜想,并用数学归纳法证明.

解:(1)因为前六项的和除以3余数为1

所以这6项中包含2151,其余均为2

所以这样的数列共有个,故

2)因为除以3余数为1

所以这项中包含2151……1,其余均为2

所以,设除以3余数为20的数列的个数构成的数列分别为

同理,

结合(1)猜想

下面用数学归纳法证明

时,,成立

假设当时,有成立,且

则当时,数列共项,分两步看,第一步先看前项,前项的和除以3余数为120的数列的个数分别为,第二步看后6项,最后6项的和除以3众数为021的数列的个数分别为222121

所以当时,猜想也成立

综上,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】201912月以来,湖北武汉市发现多起病毒性肺炎病例,并迅速在全国范围内开始传播,专家组认为,本次病毒性肺炎病例的病原体初步判定为新型冠状病毒,该病毒存在人与人之间的传染,可以通过与患者的密切接触进行传染.我们把与患者有过密切接触的人群称为密切接触者,每位密切接触者被感染后即被称为患者.已知每位密切接触者在接触一个患者后被感染的概率为,某位患者在隔离之前,每天有位密切接触者,其中被感染的人数为,假设每位密切接触者不再接触其他患者.

1)求一天内被感染人数为的概率的关系式和的数学期望;

2)该病毒在进入人体后有14天的潜伏期,在这14天的潜伏期内患者无任何症状,为病毒传播的最佳时间,设每位患者在被感染后的第二天又有位密切接触者,从某一名患者被感染,按第1天算起,第天新增患者的数学期望记为.

i)求数列的通项公式,并证明数列为等比数列;

ii)若戴口罩能降低每位密切接触者患病概率,降低后的患病概率,当取最大值时,计算此时所对应的值和此时对应的值,根据计算结果说明戴口罩的必要性.(取

(结果保留整数,参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人在政治、历史、地理、物理、化学、生物、技术7门学科中任选3门.若同学甲必选物理,则下列说法正确的是(

A.甲、乙、丙三人至少一人选化学与全选化学是对立事件

B.甲的不同的选法种数为15

C.已知乙同学选了物理,乙同学选技术的概率是

D.乙、丙两名同学都选物理的概率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省新高考将实行模式,“3”为全国统考科目语文数学外语,所有学生必考;“1”为首选科目,考生须在物理历史两科中选择一科;“2”为再选科目,考生可在化学生物思想政治地理4个科目中选择两科.某考生已经确定首选科目为物理,如果他从再选科目中随机选择两科,则思想政治被选中的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是圆柱底面圆O的直径,底面半径,圆柱的表面积为,点在底面圆上,且直线与下底面所成的角的大小为.

(1)求的长;

(2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四面体中,,平面平面,且.

(1)证明:平面

(2)设为棱的中点,当四面体的体积取得最大值时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)证明函数在区间上单调递增;

2)证明函数(-π0)上有且仅有一个极大值点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,若椭圆经过点,且△PF1F2的面积为2

1)求椭圆的标准方程;

2)设斜率为1的直线与以原点为圆心,半径为的圆交于AB两点,与椭圆C交于CD两点,且),当取得最小值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端.某种植户对一块地的个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立.对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种.

(1)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?

(2)当时,用表示要补播种的坑的个数,求的分布列与数学期望.

查看答案和解析>>

同步练习册答案