精英家教网 > 高中数学 > 题目详情
2.已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,求下列各式的值:
(1)x+x-1
(2)$\frac{{x}^{\frac{3}{2}}+{x}^{-\frac{3}{2}}+2}{{x}^{2}+{x}^{-2}+3}$.

分析 (1)利用x+x-1=$({x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}})^{2}$-2,即可得出.
(2)利用x2+x-2=(x+x-12-2,${x}^{\frac{3}{2}}+{x}^{-\frac{3}{2}}$=$({x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}})$(x+x-1-1),即可得出.

解答 解:(1)∵x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,∴x+x-1=$({x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}})^{2}$-2=32-2=7.
(2)∵x2+x-2=(x+x-12-2=72-2=47,
${x}^{\frac{3}{2}}+{x}^{-\frac{3}{2}}$=$({x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}})$(x+x-1-1)=3×(7-1)=18.
∴$\frac{{x}^{\frac{3}{2}}+{x}^{-\frac{3}{2}}+2}{{x}^{2}+{x}^{-2}+3}$=$\frac{18+2}{47+3}$=$\frac{2}{5}$.

点评 本题考查了根式的运算性质、乘法公式,考查了变形能力、计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数y=$\left\{\begin{array}{l}{{2}^{x}-1,x≤-1}\\{lo{g}_{2}(x+1),-1<x<2}\\{{x}^{2},x≥2}\end{array}\right.$,试设计一个算法,输入x的值,求对应的函数值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列式子中,y不是x的函数的是(  )
A.x=y2+1B.y=2x2+1C.x-2y=6D.x=$\sqrt{y}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x+$\frac{a}{x}$(α>0).
(1)证明:f(x)在区间(0,$\sqrt{a}$]上为减函数,在[$\sqrt{a}$,+∞) 上为增函数;
(2)求f(x)在区间(0,+∞)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.若B?A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=$\left\{\begin{array}{l}{2{x}^{2}\\;(0≤x≤1)}\\{2\\;(1<x<2)}\\{3\\;(x≥2)}\end{array}\right.$的值域是[0,2]∪{3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列不等式中,解集是一切实数的是(  )
A.4x2-4x+1>0B.-x2+x-4<0C.x2-2x+3<0D.x2-x-2>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求y=$\sqrt{{x}^{2}-2x+5}$+$\sqrt{{x}^{2}-6x+25}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若关于x的不等式x2-(a+1)x+a<0的解集是x2-5x+4<0的解集的子集,则实数a的取值范围是{a|1≤a≤4}.

查看答案和解析>>

同步练习册答案