精英家教网 > 高中数学 > 题目详情
如图,在直角梯形ABCD中,DA=AB=1,BC=2,点P在阴影区域(含边界)中运动,则有
PA
BD
的取值范围是(  )
A、[-
1
2
,1]
B、[-1,
1
2
]
C、[-1,1]
D、[-1,0]
考点:平面向量数量积的运算
专题:平面向量及应用
分析:在直角梯形ABCD中,DA=AB=1,BC=2,由此求得BD,进一步利用向量的三角形法则以及向量的运算得到
PA
BD
的最值.
解答: 解:∵在直角梯形ABCD中,DA=AB=1,BC=2,
∴BD=
2

如图所示,过点A作AO⊥BD,垂足为O.
PA
=
PO
+
OA
OA
BD
=0

PA
BD
=(
PO
+
OA
BD
=
PO
BD

所以当点P取点B时,则
PA
BD
=
PO
BD
=
1
2
×
2
×
2
=1,
当点P取BC边上的任意一点时,
PA
BD
取得最小值=-
1
2
×
2
×
2
=-1.
PA
BD
的取值范围是[-1,1].
故选C..
点评:本题考查了向量的数量积定义及其性质、投影的定义、向量的三角形法则、直角梯形的性质等基础知识与基本技能方法,考查了转化方法,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lg((x-1)|ax-1|),
(a∈R)在其定义域上为单调函数,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值
(1)[(3
3
8
)
-
2
3
-(5
4
9
)
0.5
+(0.008)-
2
3
÷(0.02)-
1
2
×(0.32)
1
2
]÷0.062 50.25
(2)2(lg
2
2+lg
2
•lg5+
lg
2
2
-lg2+1

查看答案和解析>>

科目:高中数学 来源: 题型:

直线2x-y+3=0关于直线x-y+2=0对称的直线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程
|x|
x+4
=kx2有3个不同的实数解,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2-mx+2m-3=0的两个实数根都大于1,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|x+2y+3z|≥4(x,y,z∈R).
(Ⅰ)求x2+y2+z2的最小值;
(Ⅱ)若|a+2|≤
7
2
(x2+y2+z2)
对满足条件的一切实数x,y,z恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O是坐标原点,A(-1,1),若点M(x,y)为平面区域
x+y≥2
x≤1
y≤2
上的一个动点,则
OA
OM
的最小值是(  )
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

2014年11月10日APEC会议在北京召开,某服务部需从大学生中招收志愿者,被招收的志愿者需参加笔试和面试两部分,把参加笔试的40名大学生的成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100),得到的频率分布直方图如图所示:
(1)分别求出成绩在第3,4,5组的人数;
(2)现决定在笔试成绩较高的第3、4、5组中用分层抽样抽取6人进行面试.
①已知甲和乙的成绩均在第3组,求甲或乙进入面试的概率
②若从这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有X名学生被考官D面试,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案