精英家教网 > 高中数学 > 题目详情

【题目】下列命题中,是假命题的是(
A.?x0∈R,sinx0+cosx0=
B.?x0∈R,tanx0=2016
C.?x>0,x>lnx
D.?x∈R,2x>0

【答案】A
【解析】解:sinx+cosx= sin(x+ )∈[﹣ ], [﹣ ],
x0∈R,sinx0+cosx0= 是假命题;
tanx∈R,故x0∈R,tanx0=2016是真命题;
令f(x)=x﹣lnx,则f′(x)=1﹣ ,当x∈(0,1)时,f′(x)<0,函数为减函数,当x∈(1,+∞)时,f′(x)>0,函数为增函数,
故当x=1时,f(x)取最小值1,故f(x)=x﹣lnx≥1恒成立,
x>0,x>lnx是真命题;
指数函数的值域为(0,+∞),
x∈R,2x>0是真命题;
故选:A.
【考点精析】通过灵活运用命题的真假判断与应用,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】叙利亚内战接近尾声,中国红十字会相应国际号召,支持叙利亚人民战后重建,为解决现阶段叙利亚人民急需的医疗保障,现拟从北京某知名医院的专职教授的医生6人(其中男医生3人,女医生3人),护士8人(其中男护士2人,女护士6人)中选派医生、护士各三人组成卫生医疗对,要求男医生至少两人,男护士至少一人,则这样的选派方案共有__________.(请用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax2+bx+1.
(1)若f(x)>0的解集是(﹣1,2),求实数a,b的值.
(2)求z=3a﹣b的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱ABC﹣A1B1C1中,已知D,E分别为BC,B1C1的中点,点F在棱CC1上,且EF⊥C1D.求证:

(1)直线A1E∥平面ADC1
(2)直线EF⊥平面ADC1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】奇函数fx)定义域是(﹣1,0)∪(0,1),f)=0,当x>0时,总有(xf′(xln(1﹣x2)>2fx)成立,则不等式fx)>0的解集为(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示三条不同的直线,表示三个不同的平面,给出下列四个命题:

,则

内的射影, ,则

是平面的一条斜线,点为过点的一条动直线,则可能有

,则.

其中正确的序号是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABC中,PA⊥底面ABCDAD∥BCAB=AD=AC=3PA=BC=4M为线段AD上一点,AM=2MDNPC的中点.

)证明MN∥平面PAB;

)求直线AN与平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F1(﹣1,0),F2(1,0),动点M到点F2的距离是 ,线段MF1的中垂线交线段MF2于点P. (Ⅰ)当点M变化时,求动点P的轨迹G的方程;
(Ⅱ)过点F2且不与x轴重合的直线L与曲线G相交于A,B两点,过点B作x轴的平行线与直线x=2相交于点C,则直线AC是否恒过定点,若是请求出该定点,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},an=(2n+m)+(﹣1)n(3n﹣2)(m∈N* , m与n无关),若 a2i1≤k2﹣2k﹣1对一切m∈N*恒成立,则实数k的取值范围为

查看答案和解析>>

同步练习册答案