精英家教网 > 高中数学 > 题目详情
11.若函数$f(x)=lgsin({ωx+\frac{π}{6}})({ω>0})$的最小正周期为π,则f(x)在[0,π]上的递减区间为[$\frac{π}{6}$,$\frac{5π}{12}$).

分析 利用正弦函数的周期性求得ω,本题即求y=sin(2x+$\frac{π}{6}$)在函数值大于零时的减区间.令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$<2kπ+π,求得x的范围,结合在[0,π]上,确定函数的减区间.

解答 解:函数$f(x)=lgsin({ωx+\frac{π}{6}})({ω>0})$的最小正周期为π,则$\frac{2π}{ω}$=π,∴ω=2,
本题即求y=sin(2x+$\frac{π}{6}$)在函数值大于零时的减区间.
令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$<2kπ+π,求得kπ+$\frac{π}{6}$≤x<kπ+$\frac{5π}{12}$,
可得函数的减区间为[kπ+$\frac{π}{6}$,kπ+$\frac{5π}{12}$),k∈Z.
∵x∈[0,π],故函数在[0,π]上的递减区间为[$\frac{π}{6}$,$\frac{5π}{12}$),
故答案为:[$\frac{π}{6}$,$\frac{5π}{12}$).

点评 本题主要考查复合函数的单调性,正弦函数、对数函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+1,x<1}\\{{x}^{2}+ax,x≥1}\end{array}\right.$,若f[f(0)]=4a,则实数a等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.与-265°终边相同的角为(  )
A.95°B.-95°C.85°D.-85°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f (x)=cosx,且f1(x)=f'(x),fn+1(x)=fn'(x)(n∈N*),则f2017(x)=(  )
A.-sin xB.-cos xC.sin xD.cos x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,且${a_1}=1,{S_n}={n^2}{a_n}(n∈{N_+})$
(1)试求出S1,S2,S3,S4,并猜想Sn的表达式;
(2)证明你的猜想,并求出an的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.禇娇静老师在班级组织五一节抽奖活动,她有四个游戏盒,将它们水平放稳后,在上面仍一粒玻璃珠,若玻璃珠落在阴影部分,则可中奖,则中奖机会大的游戏盘是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.空间中两点A(1,-1,2)、B(-1,1,2$\sqrt{2}$+2)之间的距离是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若双曲线与椭圆4x2+y2=64有公共的焦点,它们的离心率互为倒数,则双曲线的方程是(  )
A.3y2-x2=36B.x2-3y2=36C.3x2-y2=36D.y2-3x2=36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知${(\sqrt{x}-\frac{2}{x^2})^n}\;(n∈{N_+})$的展开式中第五项系数与第三项的系数的比值是10.
(1)求展开式的各项系数和及二项式系数和;
(2)求展开式中x-1的项的系数;
(3)求展开式中系数绝对值最大的项.

查看答案和解析>>

同步练习册答案