精英家教网 > 高中数学 > 题目详情
设函数f(x)=
x-a
(a∈R).若存在b∈[0,1],使f(f(b))=b成立,则a的取值范围是(  )
A、[0,
1
4
]
B、[1,2]
C、[0,1]
D、[
1
4
,1]
考点:幂函数的性质,函数的值
专题:
分析:根据函数式子得出:存在b∈[0,1],使f(b)=f-1(b)”,
即可判断出y=f(x)的图象与函数y=f-1(x)的图象有交点,
y=f(x)的图象与函数y=f-1(x)的图象的交点必定在直线y=x上,
转化为根据
x-a
=x,化简整理得x-a=x2.x∈[0,1],
即a=x-x2,x∈[0,1],利用二次函数性质求解即可.
解答: 解:由f(f(b))=b,可得f(b)=f-1(b),
其中f-1(x)是函数f(x)的反函数
因此命题“存在b∈[0,1]使f(f(b))=b成立”,转化为
“存在b∈[0,1],使f(b)=f-1(b)”,
即y=f(x)的图象与函数y=f-1(x)的图象有交点,
且交点的横坐标b∈[0,1],
∵y=f(x)的图象与y=f-1(x)的图象关于直线y=x对称,
∴y=f(x)的图象与函数y=f-1(x)的图象的交点必定在直线y=x上,
由此可得,y=f(x)的图象与直线y=x有交点,且交点横坐标b∈[0,1],
根据
x-a
=x,化简整理得x-a=x2.x∈[0,1],
即a=x-x2,x∈[0,1],
∴根据二次函数的性质得出:0≤a≤
1
4

即实数a的取值范围为[0,
1
4
].
故选:A.
点评:本题给出含有根号与指数式的基本初等函数,在存在b∈[1,e]使f(f(b))=b成立的情况下,求参数a的取值范围.着重考查了基本初等函数的图象与性质、函数的零点存在性定理和互为反函数的两个函数的图象特征等知识,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果单位圆x2+y2=1与圆C:(x-a)2+(y-a)2=4相交,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正数x,y满足
8
x
+
1
y
=1
,则x+2y的最小值为(  )
A、18
B、16
C、6
2
D、6
2
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

制造甲、乙两种烟花,甲种烟花每枚含A药品3g,B药品4g,C种药品4g,乙种烟花每枚含A药品2g,B药品11g,C药品6g.已知每天原料的使用限额为A种药品120g,B药品400g,C药品240g.甲种烟花每枚可获利2元,乙种烟花每枚可获利1元,问每天应生产甲、乙两种烟花各多少枚才能获利最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x,y)在圆x2+y2-6x-6y+14=0上. 求
y
x
的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

以(3,-1)为圆心,4为半径的圆的方程为(  )
A、(x+3)2+(y-1)2=4
B、(x-3)2+(y+1)2=4
C、(x-3)2+(y+1)2=16
D、(x+3)2+(y-1)2=16

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(1-x)+loga(x+3)
(1)求函数f(x)的定义域;
(2)求函数f(x)的零点;
(3)求函数f(x)在[-2,0]上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

cos70°cos10°+sin70°sin10°的值是(  )
A、80
B、60
C、
1
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内给定三个向量
a
=(3,2),
b
=(-1,2),
c
=(4,1).
(Ⅰ)设向量
d
=
8
a
+
8
b
,且|
d
|=
10
,求向量
d
的坐标;
(Ⅱ) 若(
a
+k
c
)∥(2
b
-
a
),求实数k的值.

查看答案和解析>>

同步练习册答案