【题目】在区间[0,1]上给定曲线y=x2.试在此区间内确定点t的值,使图中的阴影部分的面积S1与S2之和最小,并求最小值.
【答案】答案见解析
【解析】试题分析:
由题意结合定积分的几何意义可求得,结合定义域讨论函数的单调性可得当时,S1与S2之和取得最小值,且最小值为.
试题解析:
S1面积等于边长分别为t与t2的矩形面积去掉曲线y=x2与x轴、直线x=t所围成的面积,即S1=t·t2-x2dx=t3.
S2的面积等于曲线y=x2与x轴,x=t,x=1围成的面积去掉矩形边长分别为t2,1-t面积,即S2=x2dx-t2(1-t)=t3-t2+.
所以阴影部分的面积S(t)=S1+S2=t3-t2+(0≤t≤1).
令S′(t)=4t2-2t=4t=0,得t=0或t=.
t=0时,S(t)=;t=时,S(t)=;t=1时,S(t)=.
所以当t=时,S(t)最小,且最小值为.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=,其中a>0且a≠1,若a=时方程f(x)=b有两个不同的实根,则实数b的取值范围是______;若f(x)的值域为[3,+∞],则实数a的取值范围是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在圆锥PO中,已知,圆O的直径,C是弧AB的中点,D为AC的中点.
(1)求异面直线PD和BC所成的角的正切值;
(2)求直线OC和平面PAC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex-x2+2ax.
(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若f(x)在R上单调递增,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】. (12分)如图所示,函数的一段图象过点.
(1)求函数的表达式;
(2)将函数的图象向右平移个单位,得函数的图象,求函数的最大值,并求此时自变量的取值集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcos θ=4.
(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|·|OP|=16,求点P的轨迹C2的直角坐标方程;
(2)设点A的极坐标为,点B在曲线C2上,求△OAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:关于x的不等式ax>1,(a>0,a≠1)的解集是{x|x<0},命题q:函数y=lg(x2-x+a)的定义域为R,若p∨q为真,p∧q为假,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com