精英家教网 > 高中数学 > 题目详情
20.下列四个函数中,在(1,+∞)上为增函数的是(  )
A.y=2-xB.y=x2-3xC.y=2x-2D.y=log2(x-2)

分析 根据常见函数的性质判断函数的单调性即可.

解答 解:对于A:y=2-x在R递减,故A不合题意;
对于B:y=x2-3x的对称轴是x=$\frac{3}{2}$,
函数在(1,$\frac{3}{2}$)递减,在($\frac{3}{2}$,+∞)递增,故B不合题意;
对于C:y=xx-2在(1,+∞)递增,符合题意,故C正确;
对于D:y=log2(x-2),在(1,2)无意义,不合题意;
故选:C.

点评 本题考查了函数的单调性问题,熟练掌握常见函数的性质是解题的关键,本题是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.函数f(x)=ax3+bx2-3x 在点x=1 处取得极大值为2.
(1)求函数f(x)的解析式;
(2)求函数f(x)在区间[0,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.(a+x)5展开式中x2的系数为80,则实数a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l1:2x+3my-m+2=0和l2:mx+6y-4=0,若l1∥l2,则l1与l2之间的距离为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{10}}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{2\sqrt{10}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设命题p:$\frac{1}{x-3}<0$,命题q:x2-4x-5<0.若“p且q”为假,“p或q”为真,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow a=({1,3})$,$\overrightarrow b=({-2,m})$,若$\overrightarrow a$与$\overrightarrow a+2\overrightarrow b$平行,则m的值为(  )
A.1B.-1C.-2D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.命题“若x=2,则x2-3x+2=0”的否命题是(  )
A.若x≠2,则x2-3x+2≠0B.若x2-3x+2=0,则x=2
C.若x2-3x+2≠0,则x≠2D.若x=2,则x2-3x+2≠0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow a=(1,1,0)$,$\overrightarrow b=(-1,0,2)$,且$k\overrightarrow a+\overrightarrow b$与$\overrightarrow a$互相垂直,则k=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$-\frac{1}{3}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=x(ex-1)-ax2在点(1,f(1))处的切线斜率为2e-2.
(1)求a;
(2)若函数y=f(x)在区间(2m-3,3m-2)上是增函数,求实数m的取值范围.

查看答案和解析>>

同步练习册答案