【题目】已知函数.
(Ⅰ)若恒成立,求实数的值;
(Ⅱ)存在,且,,求证:.
【答案】(Ⅰ);(Ⅱ)见证明
【解析】
(Ⅰ)由不等式恒成立,即恒成立,令,分类讨论求得函数的单调性和最值,即可求解;
(Ⅱ)设,得到,转化为证明,进而转化为证,令,利用函数,单调性与最值,即可作出证明.
(Ⅰ)由题意,不等式恒成立,即恒成立,
令,则
①当时,,则函数单调递增,
又由,所以,,不符合题意,舍去.
②当时,函数在单调递减,单调递增,
所以
令,则,
则函数在单调递增,在单调递减,所以,
所以,在取等号,即.
(Ⅱ)由函数,则,
可得函数在递减;在递增,且
由,可得,
设,则,,
则,即 (*)
要证成立
只需证:,即证,
由(*)可知:即证
令,即证:
令,则,所以函数在上单调递增,
所以,即,
所以,所以.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的方程为,过点的直线的参数方程为(为参数).
(Ⅰ)求直线的普通方程与曲线的直角坐标方程;
(Ⅱ)若直线与曲线交于、两点,求的值,并求定点到,两点的距离之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了选派学生参加“厦门市中学生知识竞赛”,某校对本校2000名学生进行选拔性测试,得到成绩的频率分布直方图(如图).规定:成绩大于或等于110分的学生有参赛资格,成绩110分以下(不包括110分)的学生则被淘汰.
(1)求获得参赛资格的学生人数;
(2)根据频率分布直方图,估算这2000名学生测试的平均成绩(同组中的数据用该组区间点值作代表);
(3)若知识竞赛分初赛和复赛,在初赛中有两种答题方案:
方案一:每人从5道备选题中任意抽出1道,若答对,则可参加复赛,否则被淘汰;
方案二:每人从5道备选题中任意抽出3道,若至少答对其中2道,则可参加复赛,否则被海汰.
已知学生甲只会5道备选题中的3道,那么甲选择哪种答题方案,进入复赛的可能性更大?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中, 圆为 的内切圆.其中.
(1)求圆的方程及 点坐标;
(2)在直线 上是否存在异于的定点使得对圆上任意一点,都有为常数 )?若存在,求出点 的坐标及的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P–ABCD中,底面ABCD是边长为6的正方形,PD平面ABCD,PD=8.
(1) 求PB与平面ABCD所成角的大小;
(2) 求异面直线PB与DC所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋科学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有菱草垛、方垛、三角垛等等,某仓库中部分货物堆放成“菱草垛”,自上而下,第一层1件,以后每一层比上一层多1件,最后一层是件,已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的,若这堆货物总价是万元,则的值为________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】ABC的三个顶点A(-3,0),B(2,1),C(-2,3).求:
(Ⅰ)BC边上中线AD所在直线的方程;
(Ⅱ)BC边上高线AH所在直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数满足:对于任意正数,都有,且,则称函数为“L函数”.
(1)试判断函数与是否是“L函数”;
(2)若函数为“L函数”,求实数a的取值范围;
(3)若函数为“L函数”,且,求证:对任意,都有.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com