精英家教网 > 高中数学 > 题目详情
设a(0<a<1)是给定的常数,f(x)是R上的奇函数,且在(0,+∞)上是增函数,若f(
1
2
)=0
,f(logat)>0,则t的取值范围是(  )
分析:由f(x)是R上的奇函数,且在(0,+∞)上是增函数,可知函数在(-∞,0)上单调递增,且有f(-
1
2
)=f(
1
2
)=0
,则f(logat)>0转化为logat>
1
2
或-
1
2
<logat<0,再利用底数小于1的对数函数是减函数即可求t的取值范
解答:解:∵f(x)是R上的奇函数,且在(0,+∞)上是增函数,
∴在(-∞,0)上是减函数,又f(
1
2
)=0,
可得f(-
1
2
)=-f(
1
2
)=0,
∴f(x)在(-
1
2
,0)和(
1
2
,+∞)上函数值为正
∴f(logat)>0转化为logat>
1
2
或-
1
2
<logat<0,
又∵0<a<1
∴logat>
1
2
=logaa 
1
2
,可得0<a<
a

-
1
2
<logat<0,1<a<
1
a

故选D
点评:本题考查了奇函数的单调性的性质:对称区间上的单调性相同的应用,指数函数的单调性的应用,解题的关键是根据已知 得到f(x)在(-
1
2
,0)和(
1
2
,+∞)上函数值为正
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a(0<a<1)是给定的常数,f(x)是R上的奇函数,且在(0,+∞)上是增函数,若f(
12
)=0,f(logat)>0,则t的取值范围是
 

查看答案和解析>>

科目:高中数学 来源:0107 模拟题 题型:解答题

对于数列A:a1,a2,…,an,若满足ai∈{0,1}(i=1,2,3,…,n),则称数列A为“0-1数列”。定义变换T,T将"0-1数列"A中原有的每个1都变成0,1,原有的每个0都变成1,0;例如A:1,0,1,则T(A):0,1,1,0,0,1。设A0是"0-1数列",令Ak=T(Ak-1),k=1,2,3,…,
(Ⅰ)若数列A2:1,0,0,1,0,1,1,0,1,0,0,1,求数列A1,A0
(Ⅱ)若数列A0共有10项,则数列A2中连续两项相等的数对至少有多少对?请说明理由;
(Ⅲ)若A0为0,1,记数列Ak中连续两项都是0的数对个数为lk,k=1,2,3,…,求lk关于k的表达式。

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省无锡市部分学校高三4月联考数学试卷(解析版) 题型:解答题

设a(0<a<1)是给定的常数,f(x)是R上的奇函数,且在(0,+∝)上是增函数,若f()=0,f(logat)>0,则t的取值范围是   

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(北京卷解析版) 题型:解答题

设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合。

对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n):

记K(A)为∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

(1)   对如下数表A,求K(A)的值;

1

1

-0.8

0.1

-0.3

-1

 

(2)设数表A∈S(2,3)形如

1

1

c

a

b

-1

 

求K(A)的最大值;

(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。

【解析】(1)因为

所以

(2)  不妨设.由题意得.又因为,所以

于是

    

所以,当,且时,取得最大值1。

(3)对于给定的正整数t,任给数表如下,

任意改变A的行次序或列次序,或把A中的每一个数换成它的相反数,所得数表

,并且,因此,不妨设

得定义知,

又因为

所以

     

     

所以,

对数表

1

1

1

-1

-1

 

综上,对于所有的的最大值为

 

查看答案和解析>>

同步练习册答案