精英家教网 > 高中数学 > 题目详情
7.已知$sin(α+\frac{π}{5})=\frac{{\sqrt{3}}}{3}$,则$cos(2α+\frac{2π}{5})$=(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{2}{3}$D.$\frac{{\sqrt{3}}}{2}$

分析 利用二倍角公式求解即可.

解答 解:由题意:$sin(α+\frac{π}{5})=\frac{{\sqrt{3}}}{3}$,
∴$cos(2α+\frac{2π}{5})$=cos2($α+\frac{π}{5}$)=1-2sin2($α+\frac{π}{5}$)=1-2×($\frac{\sqrt{3}}{3}$)2=$\frac{1}{3}$.
故选A.

点评 本题考查了二倍角公式的运用!构造思想.属于比较基础的题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.对于任意向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$,下列命题中正确的有几个(  )
(1)|$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$||$\overrightarrow{b}$|(2)|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|((3)($\overrightarrow{a}$•$\overrightarrow{b}$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow{b}$•$\overrightarrow{c}$)(4)$\overrightarrow{a}$•$\overrightarrow{a}$=|$\overrightarrow{a}$|2
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.抛物线y2=2x的准线方程为(  )
A.x=1B.x=$\frac{1}{2}$C.x=-1D.x=-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.M是抛物线C:y2=2px(p>0)上一点,F是抛物线C的焦点,O为坐标原点,若|MF|=p,K是抛物线C准线与x轴的交点,则∠MKO=(  )
A.15°B.30°C.45°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.《孙子算经》是我国古代内容极其丰富的数学名著,书中有如下问题:“今有圆窖周五丈四尺,深一丈八尺,问受粟几何?”其意思为:“有圆柱形容器,底面圆周长五丈四尺,高一丈八尺,求此容器能放多少斛米”(古制1丈=10尺,1斛=1.62立方尺,圆周率π=3),则该圆柱形容器能放米2700斛.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知x与y之间的一组数据:
x0246
ya353a
已求得关于y与x的线性回归方程$\stackrel{∧}{y}$=1.2x+0.55,则a的值为2.15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,若输入n=2017,输出S的值为0,则f(x)的解析式可以是(  )
A.$f(x)=sin(\frac{π}{3}x)$B.$f(x)=sin(\frac{π}{2}x)$C.$f(x)=cos(\frac{π}{3}x)$D.$f(x)=cos(\frac{π}{2}x)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过点P在双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的右支上,其左、右焦点分别为F1,F2,PF1的垂直平分线过F2,且原点到直线PF1的距离恰好等于双曲线的实半轴长,则该双曲线的离心率为(  )
A.$\frac{7}{3}$B.$\frac{5}{3}$C.$\frac{5}{4}$D.$\frac{7}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.抛物线y=9x2的焦点坐标为(0,$\frac{1}{36}$).

查看答案和解析>>

同步练习册答案