精英家教网 > 高中数学 > 题目详情
12.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三两汽车在不同速度下的燃油效率情况.某城市机动车最高限速80千米/小时,相同条件下,用甲、乙、丙三两汽车在该市行驶,最省油是(  )
A.甲车B.乙车C.丙车D.无法确定

分析 根据汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,以及图象,即可判断.

解答 解:由图象可知,甲车的燃油效率最高,故以相同速度行驶相同路程,三辆车中,甲车消耗汽油最小,
故选:A.

点评 本题考查了函数图象的识别,关键掌握题意,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知f(x)=mx(m为常数,m>0且m≠1).设$f({a_1}),f({a_2}),…,f({a_n})(n∈{N^*})$是首项为4,公比为2的等比数列.
(1)求数列{an}的通项公式;
(2)若bn=an•f(an),且数列{bn}的前n项和Sn,当$m=\sqrt{2}$时,求Sn
(3)若cn=an•f(n),问是否存在实数m,使得数列{cn}中每一项恒小于它后面的项?若存在,求出实数m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.写出函数y=|x-1|的单调增区间是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线l与椭圆$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{3}=1$相交于A、B两点,且线段AB的中点为M(1,1),则直线l的方程为x+3y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的离心率为$\frac{\sqrt{3}}{2}$,右焦点到右准线的距离为$\frac{\sqrt{3}}{3}$.
(1)求椭圆C的方程
(2)如图,点M,N为椭圆上相异的两点,其中点M在第一象限,且直线AM与直线BN的斜率互为相反数.
①证明:直线MN的斜率为常数
②求四边形AMBN面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设全集U={x|0<x<9,x∈N*},若A∩B={2,3},A∩∁UB={1,5,7},∁UA∩∁UB={6},则集合B={2,3,4,8}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知m为一条直线,α,β为两个不同的平面,则下列说法正确的是(  )
A.若m∥α,α∥β,则m∥βB.若α⊥β,m⊥α,则m⊥βC.若m∥α,α⊥β,则m⊥βD.若m⊥α,α∥β,则m⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数f(x)与g(x)是相同函数的是(  )
A.$f(x)=\sqrt{{{(x-1)}^2}}$;g(x)=x-1B.$f(x)=\frac{{{x^2}-1}}{x-1}$;g(x)=x+1
C.f(x)=lg(x+1)+lg(x-1);g(x)=lg(x2-1)D.f(x)=ex+1.ex-1;g(x)=e2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=cos({2x-\frac{π}{3}})+{sin^2}x-{cos^2}x+\sqrt{2}$.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)若存在$t∈[{\frac{π}{12},\frac{π}{3}}]$满足[f(t)]2-2$\sqrt{2}$f(t)-m>0,求实数m的取值范围.

查看答案和解析>>

同步练习册答案