精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,平面,点中点,底面为梯形,.

(1)证明:平面

(2)求平面与平面所成的锐二面角的大小.

【答案】(1)详见解析;(2).

【解析】

1)取中点, 连接.利用中位线性质,结合平行线的传递性,可证出MECD平行且相等,从而得到四边形是平行四边形,可得CMDE,最后根据线面平行的判定定理,证出CM∥平面PAD

2)建立空间坐标系,求得两个面的法向量,利用向量夹角公式求得二面角的大小.

1)如图,取中点,连接.

中点,

.

.

∴四边形为平行四边形.

.

平面平面

平面.

2)取中点,由已知为正方形,又平面,故以为原点,轴建立如图所示直角坐标系,

,则

,设平面的法向量,则有,解得.

同理可求得平面的法向量

,即平面与平面所成锐二面角的大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从盛满2升纯酒精的容器里倒出1升纯酒精,然后填满水,再倒出1升混合溶液后又用水填满,以此继续下去,则至少应倒   次后才能使纯酒精体积与总溶液的体积之比低于10%.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,点是线段上的动点,则下列说法错误的是( )

A. 当点移动至中点时,直线与平面所成角最大且为

B. 无论点上怎么移动,都有

C. 当点移动至中点时,才有相交于一点,记为点,且

D. 无论点上怎么移动,异面直线所成角都不可能是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的两个焦点为,并且经过点.

1)求双曲线的方程;

2)过点的直线与双曲线有且仅有一个公共点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为的面积为

1)求椭圆的方程;

2)过右焦点作与轴不重合的直线交椭圆两点,连接分别交直线于,两点,若直线的斜率分别为,试问:是否为定值?若是,求出该定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)令函数,若时,,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数R.

(1)讨论的单调性;

(2)若有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上横坐标为4的点到焦点的距离为5.

1)求抛物线的方程;

2)设直线与抛物线交于两点,且是弦中点,过作平行于轴的直线交抛物线于点,得到,再分别过弦的中点作平行于轴的直线依次交抛物线于点,得到,按此方法继续下去,解决下列问题:

①求证:

②计算的面积

③根据的面积的计算结果,写出的面积,请设计一种求抛物线与线段所围成封闭图形面积的方法,并求此封闭图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为是椭圆的上顶点,,且的面积为1.

(1)求椭圆的标准方程;

(2)设是椭圆上的两个动点,,求当的面积取得最大值时,直线的方程.

查看答案和解析>>

同步练习册答案