精英家教网 > 高中数学 > 题目详情

【题目】已知函数)在处取得极值,其中为常数.

I)试确定的值;

II)讨论函数的单调区间;

III)若对任意,不等式恒成立,求的取值范围.

【答案】I;(II的单调递减区间为,单调递增区间为;(III.

【解析】

试题函数的导函数为,(I)函数在处的极值,即,解方程组即可求得;(II)将代入中,并令,便可求得单调区间;(III)由前面所求的函数的单调区间,从而求得函数的最小值这样便能将不等式恒成立转化为,解不等式即可求得的取值范围.

试题解析:(I)由题意知,因此,从而

又对求导得

由题意,因此,解得

II)由(I)知),令,解得

时,,此时为减函数;

时,,此时为增函数.

因此的单调递减区间为,单调递增区间为

III)由(II)知,处取得极小值,此极小值也

是最小值,要使)恒成立,只需

,从而,解得

所以的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性.

2)是否存在实数,对任意的,且恒成立?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业在精准扶贫行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆,运送这批水果的费用最少为(

A.2400B.2560C.2816D.4576

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△为一个等腰三角形形状的空地,腰的长为(百米),底的长为(百米),现决定在空地内筑一条笔直的小路(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等.

1)若小路一端的中点,求此时小路的长度;

2)求分成的四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数,其中的一个极值点,且.

1)讨论的单调性

2)求实数a的值

3)证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论的单调性,并证明有且仅有两个零点;

(Ⅱ)设的一个零点,证明曲线在点处的切线也是曲线的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线与直线平行.

1)求实数的值;

2)若函数上恰有两个零点,求实数的取值范围.

3)记函数,设是函数的两个极值点,若,且恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知有穷数列共有,首项,设该数列的前项和为,且其中常数.

(1)求证:数列是等比数列

(2)若,数列满足,求出数列的通项公式

(3)若(2)中的数列满足不等式,求出的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知相交于点,线段是圆的一条动弦,且,则的最小值是___________

查看答案和解析>>

同步练习册答案