精英家教网 > 高中数学 > 题目详情

某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元;当用水超过4吨时,超过部分每吨3.00元。某月甲、乙两户共交水费元,已知甲、乙两户该月用水量分别为吨和吨。
(1)求关于的函数;
(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费。

(1);(2)甲户用水量为7.5吨,应缴水费元;乙户用水量为4.5吨,应缴水费元。

解析试题分析:(1)当,即时,,所以.-------1分
,,
,.------3分
,即时,
,------4分
综上:-------5分
(2)由(1)知:当时, ;当时, ;当时, .所以若甲、乙两户共交水费26.4元时, ------7分
所以,解得:;-------9分
所以甲户用水量为7.5吨,应缴水费元;乙户用水量为4.5吨,应缴水费元。-------10分
考点:分段函数的实际应用题。
点评:本题主要考查分段函数函数模型的构建及利用函数模型解决实际问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知函数=.
(1)判断函数的奇偶性,并证明;
(2)求的反函数,并求使得函数有零点的实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知幂函数为偶函数.
⑴求的值;
⑵若,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
(1)求值
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
已知二次函数
(1)设上的最大值、最小值分别是,集合,且,记,求的最小值.
(2)当时,
①设,不等式的解集为C,且,求实数的取值范围;
②设 ,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数f(x)=x2+(2+lga)x+lgb,f(-1)=-2.
(1)求a与b的关系式;
(2)若f(x)≥2x恒成立,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共12分)水库的蓄水量随时间而变化,现用t表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t的近似函数关系式为
V(t)=
(Ⅰ)该水库的蓄水量小于50的时期称为枯水期.以i-1<t<i表示第i月份(i=1,2,…,12),问一年内哪几个月份是枯水期?
(Ⅱ)求一年内该水库的最大蓄水量(取e=2.7计算).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业为打入国际市场,决定从A、B两种产品中只选择一种进行投资生产.已
知投资生产这两种产品的有关数据如下表:(单位:万美元)

项目类别
 
年固定成本
 
每件产品成本
 
每件产品销售价
 
每年最多可生产的件数
 
A产品
 
10
 
m
 
5
 
100
 
B产品
 
20
 
4
 
9
 
60
 
其中年固定成本与年生产的件数无关,m为待定常数,其值由生产A产品的原材料价格决定,预计m∈[3,4].另外,年销售x件B产品时需上交0.05x2万美元的特别关税.假设生产出来的产品都能在当年销售出去.
(1)写出该厂分别投资生产A、B两种产品的年利润y1,y2与生产相应产品的件数x之间的函数关系并指明其定义域;
(2)如何投资才可获得最大年利润?请你做出规划.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(文科题)(本小题12分)
要建造一个无盖长方体水池,底面一边长固定为8m,最大装水量为72m,池底和池壁的造价分别为2元/元/,怎样设计水池底的另一边长和水池的高,才能使水池的总造价最低?最低造价是多少?

查看答案和解析>>

同步练习册答案